Many drugs have progressed through preclinical and clinical trials and have been available – for years in some cases – before being recalled by the FDA for unanticipated toxicity in humans. One reason for such poor translation from drug candidate to successful use is a lack of model systems that accurately recapitulate normal tissue function of human organs and their response to drug compounds. Moreover, tissues in the body do not exist in isolation, but reside in a highly integrated and dynamically interactive environment, in which actions in one tissue can affect other downstream tissues. Few engineered model systems, including the growing variety of organoid and organ-on-a-chip platforms, have so far reflected the interactive nature of the human body. To address this challenge, we have developed an assortment of bioengineered tissue organoids and tissue constructs that are integrated in a closed circulatory perfusion system, facilitating inter-organ responses. We describe a three-tissue organ-on-a-chip system, comprised of liver, heart, and lung, and highlight examples of inter-organ responses to drug administration. We observe drug responses that depend on inter-tissue interaction, illustrating the value of multiple tissue integration for in vitro study of both the efficacy of and side effects associated with candidate drugs.
Three-dimensional integrated organ printing (IOP) technology seeks to fabricate tissue constructs that can mimic the structural and functional properties of native tissues. This technology is particularly useful for complex tissues such as those in the musculoskeletal system, which possess regional differences in cell types and mechanical properties. Here, we present the use of our IOP system for the processing and deposition of four different components for the fabrication of a single integrated muscle-tendon unit (MTU) construct. Thermoplastic polyurethane (PU) was co-printed with C2C12 cell-laden hydrogel-based bioink for elasticity and muscle development on one side, while poly(ϵ-caprolactone) (PCL) was co-printed with NIH/3T3 cell-laden hydrogel-based bioink for stiffness and tendon development on the other. The final construct was elastic on the PU-C2C12 muscle side (E = 0.39 ± 0.05 MPa), stiff on the PCL-NIH/3T3 tendon side (E = 46.67 ± 2.67 MPa) and intermediate in the interface region (E = 1.03 ± 0.14 MPa). These constructs exhibited >80% cell viability at 1 and 7 d after printing, as well as initial tissue development and differentiation. This study demonstrates the versatility of the IOP system to create integrated tissue constructs with region-specific biological and mechanical characteristics for MTU engineering.
Bioprinting technology has emerged as a powerful tool for building tissue and organ structures in the field of tissue engineering. This technology allows precise placement of cells, biomaterials and biomolecules in spatially predefined locations within confined three-dimensional (3D) structures. Various bioprinting technologies have been developed and utilized for applications in life sciences, ranging from studying cellular mechanisms to constructing tissues and organs for implantation, including heart valve, myocardial tissue, trachea and blood vessels. In this article, we introduce the general principles and limitations of the most widely used bioprinting technologies, including jetting- and extrusion-based systems. Application-based research focused on tissue regeneration is presented, as well as the current challenges that hamper clinical utility of bioprinting technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.