This paper describes a new label-free cell separation method using a magnetic repulsion force resulting from the magnetic susceptibility difference between cells and a paramagnetic buffer solution in a microchannel. The difference in the magnetic forces acting on different-sized cells is enhanced by adjusting the magnetic susceptibility of the surrounding medium, which depends on the concentration of paramagnetic salts, such as biocompatible gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), dissolved therein. As a proof-of-concept demonstration, Gd-DTPA solutions at concentrations of 0-80 mM were applied to separate U937 cells from red blood cells (RBCs) and to distinguish two different-sized polystyrene (PS) beads (8 and 10 μm in diameter). By increasing the Gd-DTPA concentration from 0 to 40 mM, the separation resolution of PS beads was increased from 0.08 to 0.91. Additionally, we successfully achieved label-free separation of U937 cells from RBCs with >90% purity and 1 × 10(5) cells/h throughput using a 40 mM Gd-DTPA solution.
We demonstrate a novel magnetophoretic immunoassay of allergen-specific immunoglobulin E (IgE) based on the magnetophoretic deflection velocity of a microbead that is proportional to the associated magnetic nanoparticles under enhanced magnetic field gradient in a microchannel. In this detection scheme, two types of house dust mites, Dermatophagoides farinae (D. farinae) and Dermatophagoides pteronyssinus (D. pteronyssinus), were used as the model allergens. Polystyrene microbeads were conjugated with each of the mite extracts followed by incubation with serum samples. The resulting mixture was then reacted with magnetic nanoparticle-conjugated anti-human IgE for detection of allergen-specific IgE by using sandwich immuno-reactions. A ferromagnetic microstructure combined with a permanent magnet was employed to increase the magnetic field gradient ( approximately 10(4) T/m) in a microfluidic device. The magnetophoretic velocities of microbeads were measured in a microchannel under applied magnetic field, and the averaged velocity was well correlated with the concentration of allergen-specific IgE in serum. From the analysis of pooled sera obtained from 44 patients, the detection limits of the allergen-specific human IgEs for D. farinae and D. pteronyssinus were determined to be 565 (0.045 IU/mL) and 268 fM (0.021 IU/mL), respectively. These values are 1 order of magnitude lower than those by a conventional CAP system. For evaluation of reproducibility and accuracy, unknown sera were subjected to a blind test by using the developed assay system, and they were compared with the CAP system. As a result, coefficient of variance was less than 10%, and the developed method enabled a fast assay with a tiny amount of serum ( approximately 10 microL).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.