In this study, we aimed to develop a prediction model of the solid solutions concentration (SSC) and moisture content (MC) in oriental melon with snapshot-type hyperspectral imagery (Visible (VIS): 460–600 nm, 16 bands; Red-Near infrared (Red-NIR): 600–860 nm, 15 bands) using a machine learning model. The oriental melons were cultivated in a hydroponic greenhouse, Republic of Korea, and a total of 91 oriental melons that were harvested from March to April of 2022 were used as samples. The SSC and MC of the oriental melons were measured using destructive methods after taking hyperspectral imagery of the oriental melons. The reflectance spectrum obtained from the hyperspectral imagery was processed by the standard normal variate (SNV) method. Variable importance in projection (VIP) scores were used to select the bands related to SSC and MC. As a result, ten (609, 736, 561, 849, 818, 489, 754, 526, 683, and 597 nm) and six (609, 736, 561, 818, 849, and 489 nm) bands were selected for the SSC and MC, respectively. Four machine learning models, support vector regression (SVR), ridge regression (RR), K-nearest neighbors regression (K-NNR), and random forest regression (RFR), were used to develop models to predict SSC and MC, and their performances were compared. The SVR showed the best performance for predicting both the SSC and MC of the oriental melons. The SVR model achieved a relatively high accuracy with R2 values of 0.86 and 0.74 and RMSE values of 1.06 and 1.05 for SSC and MC, respectively. However, it will be necessary to carry out more experiments under various conditions, such as differing maturities of fruits and varying light sources and environments, to achieve more comprehensive predictions and apply them to monitoring robots in the future. Nevertheless, it is considered that the snapshot-type hyperspectral imagery aided by SVR would be a useful tool to predict the SSC and MC of oriental melon. In addition, if the maturity classification model for the oriental melon can be applied to fields, it could lead to less labor and result in high-quality oriental melon production.
It is necessary to convert to automation in a tomato hydroponic greenhouse because of the aging of farmers, the reduction in agricultural workers as a proportion of the population, COVID-19, and so on. In particular, agricultural robots are attractive as one of the ways for automation conversion in a hydroponic greenhouse. However, to develop agricultural robots, crop monitoring techniques will be necessary. In this study, therefore, we aimed to develop a maturity classification model for tomatoes using both support vector classifier (SVC) and snapshot-type hyperspectral imaging (VIS: 460–600 nm (16 bands) and Red-NIR: 600–860 nm (15 bands)). The spectral data, a total of 258 tomatoes harvested in January and February 2022, was obtained from the tomatoes’ surfaces. Spectral data that has a relationship with the maturity stages of tomatoes was selected by correlation analysis. In addition, the four different spectral data were prepared, such as VIS data (16 bands), Red-NIR data (15 bands), combination data of VIS and Red-NIR (31 bands), and selected spectral data (6 bands). These data were trained by SVC, respectively, and we evaluated the performance of trained classification models. As a result, the SVC based on VIS data achieved a classification accuracy of 79% and an F1-score of 88% to classify the tomato maturity into six stages (Green, Breaker, Turning, Pink, Light-red, and Red). In addition, the developed model was tested in a hydroponic greenhouse and was able to classify the maturity stages with a classification accuracy of 75% and an F1-score of 86%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.