ObjectivesThis study investigated the correlation between bone mineral density (BMD)/trabecular bone score (TBS) and body mass index (BMI), height and weight in Korean adults.MethodsWe enrolled 2555 female participants in their 20s–80s and 1631 male participants in their 20s–70s. Participants with history of previous vertebral surgeries or current vertebral diseases were excluded. Female and male participants were divided into osteoporosis group (n = 136 and n = 31, respectively), osteopenia group (n = 822 and n = 460, respectively), and normal group (n = 1596 and n = 1140, respectively) based on their BMD T-score. Dual-energy X-ray absorptiometry image analysis and linear regression analysis were conducted on each participant in each group to determine the P-value and the correlation between BMD T-score/TBS T-score and BMI, weight, and height.ResultsWe found a significant correlation between BMI and TBS in both male and female participants. In the male participants, the correlation coefficient increased progressively from the normal group to the osteoporosis group. In the female group, we observed a significant positive correlation between height and TBS, and in the male group a significant negative correlation between weight and TBS was observed.ConclusionsBMI and weight are closely correlated to body fat content. BMD was positively correlated to BMI and weight, while TBS was negatively correlated to BMI and weight. Therefore, although BMI causes an increase in BMD, it appears to be negatively affecting bone quality.
The all-on-4 concept, which is used to rehabilitate edentulous patients, can present with mechanical complications such as screw loosening and fracture. The purpose of this study was to evaluate the stress patterns induced in the prosthetic screws by the different prosthetic screw and abutment designs in the all-on-4 concept using finite element analysis. Von Mises stress values on 6 groups of each screw type, including short and narrow screw, short abutment; short and wide screw, short abutment; long and wide screw, short abutment; short and narrow screw, long abutment; short and wide screw, long abutment; and long and wide screw, long abutment, were compared under a cantilever loading of 200 N that was applied on the farther posterior to the position of the connection between the distal implant and the metal framework. Posterior prosthetic screws showed higher stress values than anterior prosthetic screws. The stress values in posterior prosthetic screws decreased as the length and diameter increased. In conclusion, the long and wide screw design offers advantages in stress distribution when compared with the short and narrow design.
The development of additive manufacturing technology has facilitated the production of cellular structures such as lattices. Topology optimization is a tool for computing the optimal geometry of an object within certain conditions, and it can be used to increase the stiffness and decrease the weight. In this study, a “double-optimized lattice structure” was designed by applying the solid isotropic material with penalization method for topology optimization twice, first to optimize the unit cell of the lattice and then to grade and insert the cells into a global model. This design was applied to a Messerschmitt–Bölkow–Blohm beam and produced via material extrusion additive manufacturing. Subsequently, it was evaluated by a three-point bending test, and the results indicated that the double-optimized lattice beam had a 1.6–1.9 fold greater effective stiffness and a 2 fold higher ultimate load than the values obtained for the beam designed with conventional methods. Thus, the double-optimized lattice structure developed herein can be an effective material with regard to its low weight and high stiffness. Contrarily, the penalty factor p of the solid isotropic material with penalization did not affect the properties. This finding suggests that p can control homogeneity while maintaining the strength of the structure.
Several composite materials are being investigated as reinforcement fillers for surgery simulations. This study presents an artificial composite material with properties similar to those of the human bone, which may be used in surgery simulations. Moreover, considering the potential toxicity of debris generated during sawing, a safe epoxy-based composite material was synthesized using cellulose nanocrystals (CNCs) and bioceramics (i.e., hydroxyapatite, Yttria stabilized zirconia oxide, Zirconia oxide), which were used to mimic the stiffness of human bone. To examine the change in mechanical properties according to the composition, 1, 3, and 5 wt% of CNCs were mixed with 5 wt% of the bioceramics. When CNCs were added at 1 wt%, there was a confirmed change in the non-linear stiffness and ductility. The CNC-added specimen fractured when forming a nano-network around the local CNCs during curing. In contrast, the specimen without CNCs was more densely structured, and combined to form a network of all specimens such that a plastic region could exist. Thus, this study successfully manufactured a material that could mimic longitudinal and transverse characteristics similar to those of real human bone, as well as exhibit mechanical properties such as strength and stiffness. Bioceramics are harmless to the human body, and can be used by controlling the added quantity of CNCs. We expect that this material will be suitable for use in surgery simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.