Senescence in stem cells, which occurs as a consequence of chronic responses to the environment, defines the capacity of stem cells for proliferation and differentiation as well as their potential for tissue regeneration and homeostasis maintenance. Although stem cells reside under low oxygen pressure and the availability of oxygen is known to be a crucial determinant in their fate, the key modulators in stem cell aging and the underlying mechanism have yet to be unraveled. Human placenta‐derived mesenchymal stem cells (hpMSCs) were cultured under hypoxia (3% O2) or normoxia (21% O2) to investigate the key factors that regulate stem cell senescence under hypoxic conditions. RNA sequencing results suggested that the expression of aminoacyl‐tRNA synthetase‐interacting multifunctional protein 3 (AIMP3, EEF1E1), an aging inducer, in the hpMSCs was dramatically repressed under hypoxia with concurrent suppression of the aging marker p16INK4a. The hpMSCs that overexpressed AIMP3 under hypoxic conditions displayed significantly decreased proliferation and fewer stem cell characteristics, whereas the downregulation of AIMP3 ameliorated the age‐related senescence of MSCs. Consistent with the results of the hpMSCs, MSCs isolated from the adipose tissue of AIMP3‐overexpressing mice exhibited decreased stem cell functions. Interestingly, AIMP3‐induced senescence is negatively regulated by hypoxia‐inducible factor 1α (HIF1α) and positively regulated by Notch3. Furthermore, we showed that AIMP3 enhanced mitochondrial respiration and suppressed autophagic activity, indicating that the AIMP3‐associated modulation of metabolism and autophagy is a key mechanism in the senescence of stem cells and further suggesting a novel target for interventions against aging.
Extracellular vesicles (EVs) are cell-released, nanometer-scaled, membrane-bound materials and contain diverse contents including proteins, small peptides, and nucleic acids. Once released, EVs can alter the microenvironment and regulate a myriad of cellular physiology components, including cell–cell communication, proliferation, differentiation, and immune responses against viral infection. Among the cargoes in the vesicles, small non-coding micro-RNAs (miRNAs) have received attention in that they can regulate the expression of a variety of human genes as well as external viral genes via binding to the complementary mRNAs. In this study, we tested the potential of EVs as therapeutic agents for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. First, we found that the mesenchymal stem-cell-derived EVs (MSC-EVs) enabled the rescue of the cytopathic effect of SARS-CoV-2 virus and the suppression of proinflammatory responses in the infected cells by inhibiting the viral replication. We found that these anti-viral responses were mediated by 17 miRNAs matching the rarely mutated, conserved 3′-untranslated regions (UTR) of the viral genome. The top five miRNAs highly expressed in the MSC-EVs, miR-92a-3p, miR-26a-5p, miR-23a-3p, miR-103a-3p, and miR-181a-5p, were tested. They were bound to the complemented sequence which led to the recovery of the cytopathic effects. These findings suggest that the MSC-EVs are a potential candidate for multiple variants of anti-SARS-CoV-2.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus 2019 (COVID-19). No treatment is available. Micro-RNAs (miRNAs) in mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are potential novel therapeutic agents because of their ability to regulate gene expression by inhibiting mRNA. Thus, they may degrade the RNA genome of SARS-CoV-2. EVs can transfer miRNAs to recipient cells and regulate conditions within them. MSC-EVs harbor major therapeutic miRNAs that play important roles in the biological functions of virus-infected host cells. Here, we examined their potential impact on viral and immune responses. MSC-EVs contained 18 miRNAs predicted to interact directly with the 3’ UTR of SARS-CoV-2. These EVs suppressed SARS-CoV-2 replication in Vero E6 cells. In addition, five major miRNAs suppressed virus activity in a luciferase reporter assay by binding the 3’ UTR. MSC-EVs showed strong regenerative effects and potent anti-inflammatory activity which may prevent lethal cytokine storms. We confirmed that EVs regulated inflammatory responses by several cell types, including human brain cells that express the viral receptor ACE2, suggesting that the brain may be targeted by SARS-CoV-2. miRNAs in MSC-EVs have several advantages as therapeutic agents against SARS-CoV-2: 1) they bind specifically to the viral 3’ UTR, and are thus unlikely to have side effects; 2) because the 3’ UTR is highly conserved and rarely mutates, MSC-EV miRNAs could be used against novel variants arising during viral replication; and 3) unique cargoes carried by MSC-EVs can have diverse effects, such as regenerating damaged tissue and regulating immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.