Erwinia amylovora is a member of the harpin proteins that induces pathogen resistance and hypersensitive cell death in plants. To obtain tobacco plants displaying a hypersensitive response, the hrpN gene from Erwinia amylovora was cloned into vector pMJC-GB under the control of the rice cytochrome promoter and transfected into tobacco. Southern hybridization with a hrpN probe revealed that the gene was present in one copy in the transgenic plants. In addition, hrpN transcripts could be detected in transgenic plants but not in wild-type tobacco. The wild type gave 75 products in RAPD analysis with 12 primers while the transgenic plants gave 73, suggesting that hrpN gene had been integrated into the transgenic plant genomic DNA. The distribution of cell cycle phases in the wild type and transgenic plants was G0-G1: 71.25%, G2-M: 20.41%, S: 8.33%, while in transgenic plant was G0-G1: 54.95%, G2-M: 43.82%, S: 10.23%. The sizes of stomata and guard cells on transgenic leaves were similar to those of the wild type, but the epidermal cells were clearly smaller. The transgenic plants showed accelerated growth and development as well as enhanced resistance to Botrytis cinerea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.