BackgroundIn contrast with wild species, cultivated crop genomes consist of reshuffled recombination blocks, which occurred by crossing and selection processes. Accordingly, recombination block-based genomics analysis can be an effective approach for the screening of target loci for agricultural traits.ResultsWe propose the variation block method, which is a three-step process for recombination block detection and comparison. The first step is to detect variations by comparing the short-read DNA sequences of the cultivar to the reference genome of the target crop. Next, sequence blocks with variation patterns are examined and defined. The boundaries between the variation-containing sequence blocks are regarded as recombination sites. All the assumed recombination sites in the cultivar set are used to split the genomes, and the resulting sequence regions are termed variation blocks. Finally, the genomes are compared using the variation blocks. The variation block method identified recurring recombination blocks accurately and successfully represented block-level diversities in the publicly available genomes of 31 soybean and 23 rice accessions. The practicality of this approach was demonstrated by the identification of a putative locus determining soybean hilum color.ConclusionsWe suggest that the variation block method is an efficient genomics method for the recombination block-level comparison of crop genomes. We expect that this method will facilitate the development of crop genomics by bringing genomics technologies to the field of crop breeding.
Bakanae (foolish seedling) disease caused by Gibberella fujikuroi creates serious problems in the foremost rice growing countries. This study was conducted to identify new resistance genetic sources to Bakanae disease. Bioassay showed that 11 varieties including Gwangmyeongbyeo, Hawn, Wonseadaesoo, Erguailai etc. were resistant to bakanae disease among 254 rice germplasm. Mismatch ratio between phenotype on bakanae disease bioassay and allele type of RM9, a SSR marker closely linked the bakanae disease resistant QTL, qBK1, were 38.3%. These results suggest that RM9 might be used for selecting qBK1, but it cannot be used for wide range of rice germplasm. Resistant germplasm in this study might be have resistant genes different from qBK1. The eleven varieties resistant to selected in this study will be used to identify new resistant alleles or genes to improve bakanae disease resistance in rice.
Total tocopherol content was higher in soybean landraces as compared with modern cultivars developed by cross-breeding. These results suggest that soybean breeding is necessary to increase tocopherol levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.