Polyurethane foam manufacturing depends on its materials and processes. A polyol that contains primary alcohol is very reactive with isocyanate. Sometimes, this may cause unexpected problems. In this study, a semi-rigid polyurethane foam was fabricated; however, its collapse occurred. The cellulose nanofiber was fabricated to solve this problem, and a weight ratio of 0.25, 0.5, 1, and 3% (based on total parts per weight of polyols) of the nanofiber was added to the polyurethane foams. The effect of the cellulose nanofiber on the polyurethane foams’ rheological, chemical, morphological, thermal, and anti-collapse performances was analyzed. The rheological analysis showed that 3 wt% of the cellulose nanofiber was unsuitable because of the aggregation of the filler. It was observed that the addition of the cellulose nanofiber showed the improved hydrogen bonding of the urethane linkage, even if it was not chemically reacted with the isocyanate groups. Moreover, due to the nucleating effect of the cellulose nanofiber, the average cell area of the produced foams decreased according to the amount of the cellulose nanofiber present, and the average cell area especially was reduced about five times when it contained 1 wt% more of the cellulose nanofiber than the neat foam. Although the thermal stability declined slightly, the glass transition temperature shifted from 25.8 °C to 37.6, 38.2, and 40.1 °C by when the cellulose nanofiber increased. Furthermore, the shrinkage ratio after 14 days from the foaming (%shrinkage) of the polyurethane foams decreased 15.4 times for the 1 wt% cellulose nanofiber polyurethane composite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.