To resolve lexical disagreement problems between queries and frequently asked questions (FAQs), we propose a reliable sentence classification model based on an encoder-decoder neural network. The proposed model uses three types of word embeddings; fixed word embeddings for representing domain-independent meanings of words, fined-tuned word embeddings for representing domain-specific meanings of words, and character-level word embeddings for bridging lexical gaps caused by spelling errors. It also uses class embeddings to represent domain knowledge associated with each category. In the experiments with an FAQ dataset about online banking, the proposed embedding methods contributed to an improved performance of the sentence classification. In addition, the proposed model showed better performance (with an accuracy of 0.810 in the classification of 411 categories) than that of the comparison model.
Recently, the performance of machine-reading and comprehension (MRC) systems has been significantly enhanced. However, MRC systems require high-performance text retrieval models because text passages containing answer phrases should be prepared in advance. To improve the performance of text retrieval models underlying MRC systems, we propose a re-ranking model, based on artificial neural networks, that is composed of a query encoder, a passage encoder, a phrase modeling layer, an attention layer, and a similarity network. The proposed model learns degrees of associations between queries and text passages through dot products between phrases that constitute questions and passages. In experiments with the MS-MARCO dataset, the proposed model demonstrated higher mean reciprocal ranks (MRRs), 0.8%p–13.2%p, than most of the previous models, except for the models based on BERT (a pre-trained language model). Although the proposed model demonstrated lower MRRs than the BERT-based models, it was approximately 8 times lighter and 3.7 times faster than the BERT-based models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.