Self-assembled monolayers (SAMs) were formed by the spontaneous adsorption of octythiocyanate (OTC) on Au(111) using both solution and ambient-pressure vapor deposition methods at room temperature and 50 degrees C. The surface structures and adsorption characteristics of the OTC SAMs on Au(111) were characterized by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). The STM observation showed that OTC SAMs formed in solution at room temperature have unique surface structures including the formation of ordered and disordered domains, vacancy islands, and structural defects. Moreover, we revealed for the first time that the adsorption of OTC on Au(111) in solution at 50 degrees C led to the formation of SAMs containing small ordered domains, whereas the SAMs formed by vapor deposition at 50 degrees C had long-range ordered domains, which can be described as (radical3 x 2 radical19)R5 degrees structures. XPS measurements of the peaks in the S 2p and N 1s regions for the OTC SAMs showed that vapor deposition is the more effective method as compared to solution deposition for obtaining high-quality SAMs by adsorption of OTC on gold. The results obtained will be very useful in understanding the SAM formation of organic thiocyanates on gold surfaces.
The growth process, solvent effects, and thermal desorption behavior of octylthiocyanate [OTC, CH(3)(CH(2))(7)S-CN] self-assembled monolayers (SAMs) on Au(111) were characterized by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). To investigate their growth processes, octanethiol [OT, CH(3)(CH(2))(7)S-H] and OTC SAMs were prepared in 0.5 μM ethanol solution at room temperature as a function of immersion time: 10 min, 1 h, 2 h, and 24 h. STM imaging revealed that OT SAMs underwent a phase transition from the liquid phase containing striped-phase domains to the closely packed c(4 × 2) phase. OTC SAMs underwent a different phase transition from the liquid phase containing aggregated molecules to the disordered phase containing striped-phase domains. The adsorption amounts of OTC SAMs formed after immersion for 10 min and 24 h were measured to be 16% and 30% smaller than those of OT SAMs under the same conditions. STM and XPS results show that the growth kinetics of OTC SAMs on Au(111) are much slower than those of OT SAMs. Hexane resulted in OTC SAMs of higher structural quality than ethanol, DMF, or toluene. TDS measurements revealed that the relative desorption intensities of octanethiolate (C8S(+), monomer) and dioctyl disulfide (C8SSC8(+), dimer) to octanethiol (C8SH(+)) fragments for OTC SAMs were much weaker than those of OT SAMs. This is because desorption of monomers and dimers is strongly suppressed by low surface coverage of OTC SAMs, as revealed by STM observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.