Conventional protein kinase C (PKC) isoforms are essential serine/threonine kinases regulating many signaling networks. At cell adhesion sites, PKCα can impact the actin cytoskeleton through its influence on RhoGTPases, but the intermediate steps are not well known. One important regulator of RhoGTPase function is the multifunctional guanine nucleotide dissociation inhibitor RhoGDIα that sequesters several related RhoGTPases in an inactive form, but it may also target them through interactions with actin-associated proteins. Here, it is demonstrated that conventional PKC phosphorylates RhoGDIα on serine 34, resulting in a specific decrease in affinity for RhoA but not Rac1 or Cdc42. The mechanism of RhoGDIα phosphorylation is distinct, requiring the kinase and phosphatidylinositol 4,5-bisphosphate, consistent with recent evidence that the inositide can activate, localize, and orient PKCα in membranes. Phosphospecific antibodies reveal endogenous phosphorylation in several cell types that is sensitive to adhesion events triggered, for example, by hepatocyte growth factor. Phosphorylation is also sensitive to PKC inhibition. Together with fluorescence resonance energy transfer microscopy sensing GTP-RhoA levels, the data reveal a common pathway in cell adhesion linking two essential mediators, conventional PKC and RhoA.
Eleven cases of human brucellosis occurred among livestock workers and a veterinarian who lived and worked in a rural area around Jeongeup City, Jeollabuk-Do, Korea from February 2003 to August 2003. Eight of the patients had taken care of Korean native cattle that were infected with bovine brucellosis and had already been slaughtered. Two of the patients had taken care of dairy cattle, and one case was a veterinarian who acquired the disease through an accidental contact with infected cattle while assisting in calf delivery. Eleven cases were identified by serologic work ups and four cases were identified via positive blood cultures. This study shows that the Republic of Korea is no longer free of human brucellosis, Brucella abortus biotype 1. We reviewed the patients' characteristics and serologic data during the one-year follow up period, and we also discuss on the efficacy and side effects of the rifampin and doxycyline regimen used for the treatment of human brucellosis.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by mitochondrial dysfunction, Lewy body formation, and loss of dopaminergic neurons. Parkin, an E3 ubiquitin ligase, is thought to inhibit PD progression by removing damaged mitochondria and suppressing the accumulation of α-synuclein and other protein aggregates. The present study describes a protein-based therapy for PD enabled by the development of a cell-permeable Parkin protein (iCP-Parkin) with enhanced solubility and optimized intracellular delivery. iCP-Parkin recovered damaged mitochondria by promoting mitophagy and mitochondrial biogenesis and suppressed toxic accumulations of α-synuclein in cells and animals. Last, iCP-Parkin prevented and reversed declines in tyrosine hydroxylase and dopamine expression concomitant with improved motor function induced by mitochondrial poisons or enforced α-synuclein expression. These results point to common, therapeutically tractable features in PD pathophysiology, and suggest that motor deficits in PD may be reversed, thus providing opportunities for therapeutic intervention after the onset of motor symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.