Multi-electron redox reactions, although central to artificial photosynthesis, are kinetically sluggish. Amidst the search for synthetic catalysts for such processes, plasmonic nanoparticles have been found to catalyse multi-electron reduction of CO under visible light. This example motivates the need for a general, insight-driven framework for plasmonic catalysis of such multi-electron chemistry. Here, we elucidate the principles underlying the extraction of multiple redox equivalents from a plasmonic photocatalyst. We measure the kinetics of electron harvesting from a gold nanoparticle photocatalyst as a function of photon flux. Our measurements, supported by theoretical modelling, reveal a regime where two-electron transfer from the excited gold nanoparticle becomes prevalent. Multiple electron harvesting becomes possible under continuous-wave, visible-light excitation of moderate intensity due to strong interband transitions in gold and electron-hole separation accomplished using a hole scavenger. These insights will help expand the utility of plasmonic photocatalysis beyond CO reduction to other challenging multi-electron, multi-proton transformations such as N fixation.
The activation energy of a catalytic reaction serves not only as a metric of the efficacy of a catalyst but also as a potential indicator of mechanistic differences between the catalytic and noncatalytic reaction. However, activation energies are quite underutilized in the field of photocatalysis. We characterize in detail the effect of visible light excitation on the activation enthalpy of an electron transfer reaction photocatalyzed by plasmonic Au nanoparticles. We find that in the presence of visible light photoexcitation, the activation enthalpy of the Au nanoparticle-catalyzed electron transfer reaction is significantly reduced. The reduction in the activation enthalpy depends on the excitation wavelength, the incident laser power, and the strength of a hole scavenger. On the basis of these results, we argue that the activation enthalpy reduction is directly related to the photoelectrochemical potential built-up on the Au nanoparticle under steady-state light excitation, analogous to electrochemical activation. Under optimum light excitation conditions, a potential as high as 240 mV is measured. The findings constitute more precise insights into the mechanistic role and energetic contribution of plasmonic excitation to chemical reactions catalyzed by transition metal nanoparticles.
The precise control in size/thickness, composition, crystal phases, doping, defects, and surface properties of two-dimensional (2D) layered transition metal chalcogenide (TMC) is important for the investigation of interwoven relationship between structures, functions, and practical applications. Of the multiple synthetic routes, solution-based top-down and bottom-up chemical methods have been uniquely important for their potential to control the size and composition at the molecular level in addition to their scalability, competitive production cost, and solution processability. Here, we introduce an overview of the recent advances in the solution-based preparation routes of 2D layered TMC nanostructures along with important scientific developments.
This work provides a mechanistic understanding of hot-electron-based catalysis on Au nanoparticles (NPs) induced under plasmonic excitation. Plasmon excitation-induced hot-electron transfer from an Au NP (donor) to a ferricyanide anion (acceptor) was studied as a function of the donor–acceptor distance set by a thiolate-based self-assembled monolayer (SAM). Hot-electron-transfer rates and activation barrier heights were measured as a function of the donor–acceptor distance, up to 20 Å. Hot-electron transfer was found to be longer range than anticipated. The distance-dependent kinetics reveal that the hot-electron transfer takes place via multistep hopping in a “wire-like” manner across the insulating ligands, quite unlike the tunneling-dominated electron transfer known to take place across SAMs in the absence of plasmonic excitation. Field-assisted electron hopping may play a crucial role in hot-electron extraction and catalysis involving plasmon-excited NPs.
The field emissive, electrical, magnetic, and structural characteristics of nickel (Ni) nanowires synthesized using the electrochemical deposition method with an alumina nanoporous template are reported. The synthesis and formation of Ni nanowires were confirmed by XRD, SEM, and HR-TEM experiments. Ferromagnetic hysteresis curves and the metallic temperature dependence of the current-voltage characteristics were observed for the Ni nanowire systems. The nanotip emitters of the field emission cells of the Ni nanowires after O(2) plasma treatment were easily patterned using the solution drop casting (SDC) method, in which the Ni nanowires were homogeneously dispersed in organic solvents, and then dropped and dried on an n-type doped Si substrate as the cathode. For the O(2) plasma treated Ni nanowires, we observed that the inhomogeneous oxidized layer on their surface was reduced, that the current density of the field emission cell increased from approximately 3.0 x 10(-9) to approximately 1.0 x 10(-3) A cm(-2) due to field emission, and that the lowest threshold electric field was approximately 4 V microm(-1). The field enhancement factor was estimated as approximately 1300 for the O(2) plasma treated Ni nanowires. The evolution of the field emission obtained from the phosphor screen was observed at different applied electric fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.