Abstract. The evolution of tropospheric ozone from 1850 to 2100 has been studied using data from Phase 6 of the Coupled Model Intercomparison Project (CMIP6). We evaluate long-term changes using coupled atmosphere–ocean chemistry–climate models, focusing on the CMIP Historical and ScenarioMIP ssp370 experiments, for which detailed tropospheric-ozone diagnostics were archived. The model ensemble has been evaluated against a suite of surface, sonde and satellite observations of the past several decades and found to reproduce well the salient spatial, seasonal and decadal variability and trends. The multi-model mean tropospheric-ozone burden increases from 247 ± 36 Tg in 1850 to a mean value of 356 ± 31 Tg for the period 2005–2014, an increase of 44 %. Modelled present-day values agree well with previous determinations (ACCENT: 336 ± 27 Tg; Atmospheric Chemistry and Climate Model Intercomparison Project, ACCMIP: 337 ± 23 Tg; Tropospheric Ozone Assessment Report, TOAR: 340 ± 34 Tg). In the ssp370 experiments, the ozone burden increases to 416 ± 35 Tg by 2100. The ozone budget has been examined over the same period using lumped ozone production (PO3) and loss (LO3) diagnostics. Both ozone production and chemical loss terms increase steadily over the period 1850 to 2100, with net chemical production (PO3-LO3) reaching a maximum around the year 2000. The residual term, which contains contributions from stratosphere–troposphere transport reaches a minimum around the same time before recovering in the 21st century, while dry deposition increases steadily over the period 1850–2100. Differences between the model residual terms are explained in terms of variation in tropopause height and stratospheric ozone burden.
The evolution of tropospheric ozone from 1850 to 2100 has been studied using data from Phase 6 of the Coupled Model Intercomparison Project (CMIP6). We evaluate long-term changes using coupled atmosphere-ocean chemistry-climate models, focusing on the CMIP historical and ScenarioMIP ssp370 experiments, for which detailed tropospheric ozone diagnostics were archived. The model ensemble has been evaluated against a suite of surface, sonde, and satellite observations of the past several decades, and found to reproduce well the salient spatial, seasonal and decadal variability and trends. The 5 tropospheric ozone burden increases from 244 ± 30 Tg in 1850 to a mean value of 348 ± 15 Tg for the period 2005-2014, an increase of 40 %. Modelled present-day values agree well with previous determinations (ACCENT: 336 ± 27 Tg; ACCMIP:337 ± 23 Tg and TOAR: 340 ± 34 Tg). In the ssp370 experiments, the ozone burden reaches a maximum of 402 ± 36 Tg in 2090, before declining slightly to 396 ± 32 Tg by 2100. The ozone budget has been examined over the same period using lumped ozone production (P O3 ) and loss (L O3 ) diagnostics. There are large differences (30%) between models in the preindus-10 trial period, with the difference narrowing to 15% in the present day. Both ozone production and chemical loss terms increase steadily over the period 1850 to 2100, with net chemical production (P O3 -L O3 ) reaching a maximum around the year 2000. The residual term, which contains contributions from stratosphere-troposphere transport reaches a minimum around the same time, while dry deposition increases steadily across the experiment. Differences between the model residual terms are explained in terms of variation in tropopause height and stratospheric ozone burden. 15
Our understanding of the processes that control the burden and budget of tropospheric ozone has changed dramatically over the last 60 years. Models are the key tools used to understand these changes, and these underscore that there are many processes important in controlling the tropospheric ozone budget. In this critical review, we assess our evolving understanding of these processes, both physical and chemical. We review model simulations from the International Global Atmospheric Chemistry Atmospheric Chemistry and Climate Model Intercomparison Project and Chemistry Climate Modelling Initiative to assess the changes in the tropospheric ozone burden and its budget from 1850 to 2010. Analysis of these data indicates that there has been significant growth in the ozone burden from 1850 to 2000 (approximately 43 ± 9%) but smaller growth between 1960 and 2000 (approximately 16 ± 10%) and that the models simulate burdens of ozone well within recent satellite estimates. The Chemistry Climate Modelling Initiative model ozone budgets indicate that the net chemical production of ozone in the troposphere plateaued in the 1990s and has not changed since then inspite of increases in the burden. There has been a shift in net ozone production in the troposphere being greatest in the northern mid and high latitudes to the northern tropics, driven by the regional evolution of precursor emissions. An analysis of the evolution of tropospheric ozone through the 21st century, as simulated by Climate Model Intercomparison Project Phase 5 models, reveals a large source of uncertainty associated with models themselves (i.e., in the way that they simulate the chemical and physical processes that control tropospheric ozone). This structural uncertainty is greatest in the near term (two to three decades), but emissions scenarios dominate uncertainty in the longer term (2050–2100) evolution of tropospheric ozone. This intrinsic model uncertainty prevents robust predictions of near-term changes in the tropospheric ozone burden, and we review how progress can be made to reduce this limitation.
We present an assessment of the impacts on atmospheric composition and radiative forcing of short-lived pollutants following a worldwide decrease in anthropogenic activity and emissions comparable to what has occurred in response to the COVID-19 pandemic, using the global composition-climate model United Kingdom Chemistry and Aerosols Model (UKCA). Emission changes reduce tropospheric hydroxyl radical and ozone burdens, increasing methane lifetime. Reduced SO 2 emissions and oxidizing capacity lead to a decrease in sulfate aerosol and increase in aerosol size, with accompanying reductions to cloud droplet concentration. However, large reductions in black carbon emissions increase aerosol albedo. Overall, the changes in ozone and aerosol direct effects (neglecting aerosol-cloud interactions which were statistically insignificant but whose response warrants future investigation) yield a radiative forcing of −33 to −78 mWm −2. Upon cessation of emission reductions, the short-lived climate forcers rapidly return to pre-COVID levels; meaning, these changes are unlikely to have lasting impacts on climate assuming emissions return to pre-intervention levels. Plain Language Summary As a result of the global COVID-19 pandemic, unprecedented lockdown measures have been imposed worldwide to reduce the spread of the disease, causing huge reductions in economic activity and corresponding reductions in transport, industrial, and aircraft emissions. As well as lowering emissions of greenhouse gases, such as carbon dioxide, this has resulted in a dramatic reduction in the emissions of pollutants that also affect climate. In this study, we have used state-of-the-art computer simulations to quantify how changes in these components are likely to impact the chemical make-up of the atmosphere and the likely short-term impacts on climate. Despite large decreases in nitrogen dioxide and atmospheric particles, we find these changes result in a very small impact on the energy balance of the atmosphere but one that would act to cool the planet, without considering the knock-on impacts on clouds (which we cannot be confident about). However, these effects are all likely to be short-lived if emissions return to pre-lockdown levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.