Modern H2-based energy storage and conversion devices require a polymer electrolyte membrane (PEM) fuel cell–based integrated power system with synergistic heat integration. The key issue in integrated power systems is developing a PEM that can operate at 200–300 °C. However, currently used phosphoric-acid-based high-temperature PEM fuel cells limited stability at higher operating temperatures. Herein, we introduce a cerium hydrogen phosphate (CeHP) PEM that conducts protons above 200 °C through a self-assembled network (SAN). The SAN-CeHP-PBI reached maximum power densities of 2.4 W cm-2 and operate stably for over 7000 minute without any voltage decay at 250 ℃ under H2/O2 and anhydrous conditions. The developed fuel cell can be combined with an external hydrogen generator that uses a liquid hydrogen carrier such as N-ethylcarbazole and methanol as fuel, thus achieving a high energy efficiency. The thermal stability and fuel flexibility of these SAN-CeHP-PBI demonstrate potential for commercial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.