We introduce a multimodal facial color imaging modality that provides a conventional color image, parallel and cross-polarization color images, and a fluorescent color image. We characterize the imaging modality and describe the image analysis methods for objective evaluation of skin lesions. The parallel and cross-polarization color images are useful for the analysis of skin texture, pigmentation, and vascularity. The polarization image, which is derived from parallel and crosspolarization color images, provides morphological information of superficial skin lesions. The fluorescent color image is useful for the evaluation of skin chromophores excited by UV-A radiation. In order to demonstrate the validity of the new imaging modality in dermatology, sample images were obtained from subjects with various skin disorders and image analysis methods were applied for objective evaluation of those lesions. In conclusion, we are confident that the imaging modality and analysis methods should be useful tools to simultaneously evaluate various skin lesions in dermatology.
In dermatology, various imaging modalities have been developed as an assistant tool to objectively evaluate the treatment efficacy of facial skin lesion. In this study, we propose a digital photographic imaging system the evaluation of various facial skin lesions in order to maximize the clinical evaluation efficiency by integrating various independent imaging modalities. Our imaging system provides four different digital color images, such as standard digital color image, parallel and cross polarization digital color image, and UV-A induced fluorescent digital color image. In conclusion, by analyzing the color information and morphological features, we were able to simultaneously evaluate various skin lesions with one imaging system.
A three-dimensional stereoscopic imaging modality (3D-SIM) based on a single optical channel and detector was developed to overcome some of the limitations of conventional 3D-SIM. It produces 3-D stereoscopic images by adjusting the angle of a transparent rotating deflector (TRD) to generate disparity between left and right images. The angular effect of the TRD was demonstrated to investigate the feasibility of the proposed method in 3-D stereoscopic image generation. Results indicate that image disparity increased as a function of the rotation angles of the TRD, while maintaining adequate 3-D perception. These results are expected to facilitate the practical use of a 3D-SIM in medicine.
Background/Purpose
Digital color image analysis is currently considered as a routine procedure in dermatology. In our previous study, a multimodal facial color imaging modality (MFCIM), which provides a conventional, parallel- and cross-polarization, and fluorescent color image, was introduced for objective evaluation of various facial skin lesions. This study introduces a commercial version of MFCIM, DermaVision-PRO, for routine clinical use in dermatology and demonstrates its dermatological feasibility for cross-evaluation of skin lesions.
Methods/Results
Sample images of subjects with actinic keratosis or non-melanoma skin cancers were obtained at four different imaging modes. Various image analysis methods were applied to cross-evaluate the skin lesion and, finally, extract valuable diagnostic information. DermaVision-PRO is potentially a useful tool as an objective macroscopic imaging modality for quick prescreening and cross-evaluation of facial skin lesions.
Conclusion
DermaVision-PRO may be utilized as a useful tool for cross-evaluation of widely distributed facial skin lesions and an efficient database management of patient information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.