Context. Dynamic features such as chromospheric jets, transition region network jets, coronal plumes, and coronal jets are abundant in the network regions of polar coronal holes on the Sun. Aims. We investigate the relationship between chromospheric jets and coronal activities, such as coronal plumes and jets. Methods. We analyzed observations of a polar coronal hole including the filtergrams taken by the New Vacuum Solar Telescope at the Hα − 0.6 Å to study the Hα jets, as well as the Atmospheric Imaging Assembly 171 Å images to follow the evolution of coronal activities. Results. The Hα jets are persistent in the network regions, with only some regions (denoted as R1–R5) rooted in discernible coronal plumes. With an automated method, we identified and tracked 1320 Hα jets in the network regions. We find that the average lifetime, height, and ascending speed of the Hα jets are 75.38 s, 2.67 Mm, 65.60 km s−1, respectively. The Hα jets rooted in R1–R5 are higher and faster than those in the others. We also find that propagating disturbances (PDs) in coronal plumes have a close connection with the Hα jets. The speeds of 28 out of 29 Hα jets associated with PDs are ≳50 km s−1. In the case of a coronal jet, we find that the speeds in both the coronal jet and the Hα jet are over 150 km s−1, suggesting that both cool and hot jets can be coupled. Conclusions. Based on our analyses, it is evident that more dynamic Hα jets could release their energy to the corona, which might be the result of a Kelvin-Helmholtz instability developing or that of small-scale magnetic activities. We suggest that chromospheric jets, transition region network jets, and ray-like features in the corona are coherent phenomena that serve as important vehicles for cycling energy and mass in the solar atmosphere.
Solar Ultraviolet bursts (UBs) associated with flux emergence are expected to help understand the physical processes of the flux emergence itself. In the present study, we analyse imaging and spectroscopic observations of a special group of UBs (including twelve of them) occurring in the joint footpoint regions of multiple transition region loops above the flux emerging regions. Consistent with previous studies of common UBs, we found that the spectral characteristics of this group of UBs are varied. Our results show that the responses of UBs in Ni ii, NUV continuum, Mg ii h and O i are originated from locations differ from that emits Si iv. The imaging data show that UBs have connections with the dynamics in the transition region loops. Brightenings starting from UB-regions and propagating along loops can be seen in SJ 1400/1330 Å and AIA 304 Å images and the corresponding time-space images. The apparent velocities are tens of kilometers per second in AIA 304 Å. For symmetry, the brightenings can propagate from the UB-regions towards opposite directions with similar apparent velocities in some cases. Given that these UBs are magnetic reconnection phenomena, we suggest that the propagating brightenings are the signals of the plasma flows resulted from heatings in the UB-regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.