This paper presents a compression framework for light-field images. The main idea of our approach is exploiting the similarity across sub-aperture images extracted from light-field data to improve encoding performance. For this purpose we propose a variational optimisation approach to estimate the disparity map from light-field images and then apply it to a motion-compensated wavelet lifting scheme. Making use of JPEG2000 for coding all high-/low-pass sub-band views as well as disparity map, our approach can therefore support both lossless and lossy compression. The coding framework is tested with both synthetic and real-world light-field dataset. The experimental results demonstrate that our approach outperforms JPEG-LS and the direct application of JPEG2000 in both lossless and lossy compression scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.