Color change during flower opening is common; however, little is understood on the biochemical and molecular basis related. Lilac (Syringa oblata), a well-known woody ornamental plant with obvious petal color changes, is an ideal model. Here, we presented chromosome-scale genome assembly for lilac, resolved the flavonoids metabolism, and identified key genes and potential regulatory networks related to petal color change. The genome assembly is 1.05 Gb anchored onto 23 chromosomes, with a BUSCO score of 96.6%. Whole-genome duplication (WGD) event shared within Oleaceae was revealed. Metabolome quantification identified delphinidin-3-O-rutinoside (Dp3Ru) and cyanidin-3-O-rutinoside (Cy3Ru) as the major pigments; gene co-expression networks indicated WRKY an essential regulation factor at the early flowering stage, ERF more important in the color transition period (from violet to light nearly white), while the MBW complex participated in the entire process. Our results provide a foundation for functional study and molecular breeding in lilac.
Soil salinity is an important determinant of crop productivity and triggers salt stress response pathways in plants. The salt stress response is controlled by transcriptional regulatory networks that maintain regulatory homeostasis through combinations of transcription factor (TF)–DNA and TF–TF interactions. We investigated the transcriptome of poplar 84 K (Populus alba × Populus glandulosa) under salt stress using samples collected at 4 or 6 h intervals within 2 days of salt stress treatment. We detected 24,973 differentially expressed genes, including 2,231 TFs that might be responsive to salt stress. To explore these interactions and targets of TFs in perennial woody plants, we combined gene regulatory network, DNA affinity purification sequencing (DAP-seq), yeast two-hybrid-sequencing (Y2H-seq), and multi-gene association approaches. Growth-regulating factor 15 (PagGRF15) and its target, high-affinity K+ transporter 6 (PagHAK6), were identified as an important regulatory module in the salt stress response. Overexpression of PagGRF15 and PagHAK6 in transgenic lines improved salt tolerance by enhancing Na+ transport and modulating H2O2 accumulation in poplar. Yeast two-hybrid (Y2H) assays identified more than 420 PagGRF15-interacting proteins, including ETHYLENE RESPONSE FACTOR (ERF) TFs and a zinc finger protein (C2H2) that are produced in response to a variety of phytohormones and environmental signals and are likely involved in abiotic stress. Therefore, our findings demonstrate that PagGRF15 is a multifunctional TF involved in growth, development and salt stress tolerance, highlighting the capability of a multifaceted approach in identifying regulatory nodes in plants.
Ostrya rehderiana is a famous plant species with extremely small populations. With ongoing global climate change, the extremely small populations would face more uncertainties and risks, including the loss of genetic diversity and extirpation. Thus, assessing the impact of climate change on suitable habitat of O. rehderiana is particularly important for its conservation and restoration. Here, we built niche models with climate variables and soil and human footprint variables. Furthermore, new methods were applied to avoid confounding effects between climate and soil and human footprint variables to simulate the potential habitats of O. rehderiana in current and future climates. We found that the Hargreaves climatic moisture deficit, degree-days below 0 °C, chilling degree-days, and the temperature difference between mean warmest month temperature and mean coldest month temperature, or continentality, were the most important climate factors. The topsoil USDA texture classification, topsoil cation exchange capacity of (clay), and topsoil sodicity (ESP) were the key soil factors determining the suitable distribution of O. rehderiana. Compared with soil factors, human footprint has less influence on the suitable distribution of O. rehderiana. The niche range of this species was projected to expand and shift to north in the Representative Concentration Pathway (RCP) 4.5 scenario for the 2050s. Our study results could be referenced in further extremely small populations ecological restoration studies and provide the scientific strategies for the conservation and restoration of O. rehderiana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.