Many people worldwide suffer from mental illnesses such as major depressive disorder (MDD), which affect their thoughts, behavior, and quality of life. Suicide is regarded as the second leading cause of death among teenagers when treatment is not received. Twitter is a platform for expressing their emotions and thoughts about many subjects. Many studies, including this one, suggest using social media data to track depression and other mental illnesses. Even though Arabic is widely spoken and has a complex syntax, depressive detection methods have not been applied to the language. The Arabic tweets dataset should be scraped and annotated first. Then, a complete framework for categorizing tweet inputs into two classes (such as Normal or Suicide) is suggested in this study. The article also proposes an Arabic tweet preprocessing algorithm that contrasts lemmatization, stemming, and various lexical analysis methods. Experiments are conducted using Twitter data scraped from the Internet. Five different annotators have annotated the data. Performance metrics are reported on the suggested dataset using the latest Bidirectional Encoder Representations from Transformers (BERT) and Universal Sentence Encoder (USE) models. The measured performance metrics are balanced accuracy, specificity, F1-score, IoU, ROC, Youden Index, NPV, and weighted sum metric (WSM). Regarding USE models, the best-weighted sum metric (WSM) is 80.2%, and with regards to Arabic BERT models, the best WSM is 95.26%.
Due to its high prevalence and wide dissemination, breast cancer is a particularly dangerous disease. Breast cancer survival chances can be improved by early detection and diagnosis. For medical image analyzers, diagnosing is tough, time-consuming, routine, and repetitive. Medical image analysis could be a useful method for detecting such a disease. Recently, artificial intelligence technology has been utilized to help radiologists identify breast cancer more rapidly and reliably. Convolutional neural networks, among other technologies, are promising medical image recognition and classification tools. This study proposes a framework for automatic and reliable breast cancer classification based on histological and ultrasound data. The system is built on CNN and employs transfer learning technology and metaheuristic optimization. The Manta Ray Foraging Optimization (MRFO) approach is deployed to improve the framework’s adaptability. Using the Breast Cancer Dataset (two classes) and the Breast Ultrasound Dataset (three-classes), eight modern pre-trained CNN architectures are examined to apply the transfer learning technique. The framework uses MRFO to improve the performance of CNN architectures by optimizing their hyperparameters. Extensive experiments have recorded performance parameters, including accuracy, AUC, precision, F1-score, sensitivity, dice, recall, IoU, and cosine similarity. The proposed framework scored 97.73% on histopathological data and 99.01% on ultrasound data in terms of accuracy. The experimental results show that the proposed framework is superior to other state-of-the-art approaches in the literature review.
Terminal neurological conditions can affect millions of people worldwide and hinder them from doing their daily tasks and movements normally. Brain computer interface (BCI) is the best hope for many individuals with motor deficiencies. It will help many patients interact with the outside world and handle their daily tasks without assistance. Therefore, machine learning-based BCI systems have emerged as non-invasive techniques for reading out signals from the brain and interpreting them into commands to help those people to perform diverse limb motor tasks. This paper proposes an innovative and improved machine learning-based BCI system that analyzes EEG signals obtained from motor imagery to distinguish among various limb motor tasks based on BCI competition III dataset IVa. The proposed framework pipeline for EEG signal processing performs the following major steps. The first step uses a meta-heuristic optimization technique, called the whale optimization algorithm (WOA), to select the optimal features for discriminating between neural activity patterns. The pipeline then uses machine learning models such as LDA, k-NN, DT, RF, and LR to analyze the chosen features to enhance the precision of EEG signal analysis. The proposed BCI system, which merges the WOA as a feature selection method and the optimized k-NN classification model, demonstrated an overall accuracy of 98.6%, outperforming other machine learning models and previous techniques on the BCI competition III dataset IVa. Additionally, the EEG feature contribution in the ML classification model is reported using Explainable AI (XAI) tools, which provide insights into the individual contributions of the features in the predictions made by the model. By incorporating XAI techniques, the results of this study offer greater transparency and understanding of the relationship between the EEG features and the model’s predictions. The proposed method shows potential levels for better use in controlling diverse limb motor tasks to help people with limb impairments and support them while enhancing their quality of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.