Abstract. The EU Horizon 2020 project COREWIND has developed two floating platforms for the new International Energy Agency (IEA) Wind 15 MW reference model. One design – WindCrete – is a spar floater, and the other – Activefloat – is a semi-submersible floater. In this work the design of the floaters is introduced with their aero-hydro-servo-elastic numerical models, and the responses of both floaters in both static and dynamic simulations are verified against the operational and survival design limits. The static displacements and natural frequencies are simulated and discussed. Additionally, the effects of the mean wave drift forces, and difference second order wave forces on the systems' responses are presented. The increase in the turbine's power capacity to 15MW in IEA Wind model, leads to an increase in inertial forces and aerodynamic thrust force when compared to similar floating platforms coupled to the Danish Technical University (DTU) 10MW reference model. The goal of this work is to investigate the floaters responses at different load cases. The results in this paper suggest that at mild wave loads the motion responses of the 15MW Floating Offshore Wind Turbines (FOWT) are dominated by low frequency forces. Therefore, motions are dominated by the wind forces, and second order wave forces rather than the first order wave forces. After verifying and understanding the models' responses, the two 15MW FOWT reference numerical models are publicly available to be used in the research and development of floating wind energy.
BackgroundInvasive fungal infections have presented a challenge in treatment. In the past, it was known that the frontrunner in such infections is Candida albicans with little emphasis placed on non-albicans Candida species (NAC). Studies worldwide have shown a rise in fungal infections attributed to non-albicans Candida species. The aim of this study is to describe the epidemiology of NAC infections along with an overview of resistance in Lebanese hospitals.MethodsThis is a two-year observational multi-central descriptive study. Between September 2016 and May of 2018, a total of 1000 isolates were collected from 10 different hospitals distributed all over the country. For the culture, Sabouraud Dextrose Agar was used. Antifungal Susceptibility was evaluated by determining the Minimum Inhibitory Concentration (MIC) in broth (microdilution) of the different antifungal treatments.ResultsOut of the 1000 collected isolates, Candida glabrata, being the most isolated species (40.8%), followed by Candida tropicalis: 231(23.1%), Candida parapsilosis: 103(10.3%), and other NAC species at lower percentage. Most of these isolates (88.67%) were susceptible to posaconazole, 98.22% were susceptible to micafungin, and 10% were susceptible to caspofungin.ConclusionThe change of etiology of fungal infections involving a significant increase in NAC cases is alarming due to the different antifungal susceptibility patterns and the lack of local guidelines to guide the treatment. In this context, proper identification of such organisms is of utmost importance. The data presented here can help in establishing guidelines for the treatment of candida infections to decrease morbidity and mortality. Future surveillance data are needed.
The reaction of diethyl monoiminomalonate with benzoylacetonitrile affords the ethyl 3‐amino‐4‐cyanopentanoate derivative 1 a. Compound 1 a condensed with salicylaldehyde to yield the coumarin 5 and coupled with arenediazonium salts to yield the arenehydrazones 6a–c. Compounds 6a, b could be converted into the aminopyridazinium carboxylate 8a, b on treatment with aqueous sodium hydroxide. The reaction of 6a–c with hydrazine and phenyl hydrazine is reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.