Abstract-The robustness of urban bus-transport networks has important influence on the network performance. This paper proposes the model of layered public bus-transport network which is composed of the logical layer and the physical layer and expounds the relationship between these two layers. We map the bustransport network into two spaces: space P and space L and take space P as logical layer while space L as physical layer. We define the load of edges in the physical layer according to the traffic flow in the logical layer and assume that a removed edge only leads to a redistribution of the load through it to its neighboring edges. We analysis the robustness of layered public bustransport networks in the face of cascading failure under the case of removing the edge with the highest load and redistributing of the load. Through the simulation of the public bus-transport networks of three major cities in China, we find that in the layered public bus-transport network the traffic flow in the logical layer affects the distribution of load of edges in the physical layer. The removal of the edge with the highest load may lead to the cascading failures of the physical layer, and the avalanche size decreases with the increase of the tolerance parameter.
A series of temperature-sensitive poly (NIPAAm-co-AAc-GA) hydrogels were synthesized by the copolymerization of glycyrrhetinic acid with vinyl monomer (AAc-GA) and N-isopropylacrylamide (NIPAAm) in N, N-dimethylformamide (DMF). Since GA has the specific binding capacity to asialoglycoprotein receptors on the membrane of hepatocyte, the hydrogel with GA could be expected as good candidate for hepatic cell culture. The results showed that macroporous and channel network structure was formed in the hydrogel matrix. With increasing the AAc-GA content, the swelling ratios of hydrogels and lower critical solution temperature (LCST) increased because of the hydrophilic group of AAc-GA and the macroporous structure. In addition, the prepared hydrogels could respond quickly to temperature and exhibited good reversible temperature-responsive characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.