ABSTRACT:The diglycidyl ether of bisphenol A-m-phenylene diamine (DGEBA-M-PDA) epoxy resin was toughened with various sizes and amounts of reactive core-shell particles (CSP) with butyl acrylate (BA) as a core and methyl methacrylate (MMA) copolymerized with various concentration of glycidyl methacrylate (GMA) as a shell. Ethylene glycol dimethacrylate (EGDMA) was used to crosslink either core or shell. Among the variables of incorporated CSP indicated above, the optimal design was to obtain the maximum plastic flow of epoxy matrix surrounding the cavitated CSP during the fracture test. It could be achieved by maximizing the content of GMA in a shellcrosslinked CSP, the particle size, and the content of CSP in the epoxy resin without causing the large-scale coagulations. The incorporation of reactive CSP could also accelerate the curing reaction of epoxy resins. Besides, it was able to increase the glass transition temperature of epoxy resins if the particle size Յ0.25 m and the dispersion was globally uniform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.