Sensing movements of the upper and lower extremities is important in controlling whole-body movements. We have shown that kinesthetic illusory hand movements activate motor areas and right-sided fronto-parietal cortices. We investigated whether illusions for the upper and lower extremities, i.e. right or left hand or foot, activate the somatotopical sections of motor areas, and if an illusion for each limb engages the right-sided cortices. We scanned the brain activity of 19 blindfolded right-handed participants using functional magnetic resonance imaging (fMRI) while they experienced an illusion for each limb elicited by vibrating its tendon at 110 Hz (ILLUSION). As a control, we applied identical stimuli to the skin over a nearby bone, which does not elicit illusions (VIBRATION). The illusory movement (ILLUSION vs. VIBRATION) of each immobile limb activated limb-specific sections of the contralateral motor cortex (along with somatosensory area 3a), dorsal premotor cortex (PMD), supplementary motor area (SMA), cingulate motor area (CMA), and the ipsilateral cerebellum, which normally participate in execution of movements of the corresponding limb. We found complex non-limb-specific representations in rostral parts of the bilateral SMA and CMA, and illusions for all limbs consistently engaged concentrated regions in right-sided fronto-parietal cortices and basal ganglia. This study demonstrated complete sets of brain representations related to kinesthetic processing of single-joint movements of the four human extremities. The kinesthetic function of motor areas suggests their importance in somatic perception of limb movement, and the non-limb-specific representations indicate high-order kinesthetic processing related to human somatic perception of one's own body.
Electrophysiological studies have suggested that the activity of the primary motor cortex (M1) during ipsilateral hand movement reflects both the ipsilateral innervation and the transcallosal inhibitory control from its counterpart in the opposite hemisphere, and that their asymmetry might cause hand dominancy. To examine the asymmetry of the involvement of the ipsilateral motor cortex during a unimanual motor task under frequency stress, we conducted block-design functional magnetic resonance imaging with 22 normal right-handed subjects. The task involved visually cued unimanual opponent finger movement at various rates. The contralateral M1 showed symmetric frequency-dependent activation. The ipsilateral M1 showed task-related deactivation at low frequencies without laterality. As the frequency of the left-hand movement increased, the left M1 showed a gradual decrease in the deactivation. This data suggests a frequency-dependent increased involvement of the left M1 in ipsilateral hand control. By contrast, the right M1 showed more prominent deactivation as the frequency of the right-hand movement increased. This suggests that there is an increased transcallosal inhibition from the left M1 to the right M1, which overwhelms the right M1 activation during ipsilateral hand movement. These results demonstrate the dominance of the left M1 in both ipsilateral innervation and transcallosal inhibition in right-handed individuals.
Repetitive bimanual finger-tapping movements tend toward mirror symmetry: There is a spontaneous transition from less stable asymmetrical movement patterns to more stable symmetrical ones under frequency stress but not vice versa. During this phase transition, the interaction between the signals controlling each hand (cross talk) is expected to be prominent. To depict the regions of the brain in which cortical cross talk occurs during bimanual coordination, we conducted event-related functional magnetic resonance imaging using a bimanual repetitive-tapping task. Transition-related activity was found in the following areas: the bilateral ventral premotor cortex, inferior frontal gyrus, middle frontal gyrus, inferior parietal lobule, insula, and thalamus; the right rostral portion of the dorsal premotor cortex and midbrain; the left cerebellum; and the presupplementary motor area, rostral cingulate zone, and corpus callosum. These regions were discrete from those activated by bimanual movement execution. The phase-transition-related activation was right lateralized in the prefrontal, premotor, and parietal regions. These findings suggest that the cortical neural cross talk occurs in the distributed networks upstream of the primary motor cortex through asymmetric interhemispheric interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.