Abstract-Stroke is one of the leading causes of adult disability with high economical and societal costs. In recent years, novel rehabilitation paradigms have been proposed to address the life-long plasticity of the brain to regain motor function. We propose a hybrid brain-computer interface (BCI)-virtual reality (VR) system that combines a personalized motor training in a VR environment, exploiting brain mechanisms for action execution and observation, and a neuro-feedback paradigm using mental imagery as a way to engage secondary or indirect pathways to access undamaged cortico-spinal tracts. Furthermore, we present the development and validation experiments of the proposed system. More specifically, EEG data on nine naĂŻve healthy subjects show that a simultaneous motor activity and motor imagery paradigm is more effective at engaging cortical motor areas and related networks to a larger extent. Additionally, we propose a motor imagery driven BCI-VR version of our system that was evaluated with nine different healthy subjects. Data show that users are capable of controlling a virtual avatar in a motor imagery training task that dynamically adjusts its difficulty to the capabilities of the user. User self-report questionnaires indicate enjoyment and acceptance of the proposed system. Index Terms-Brain-computer interface (BCI), mirror neurons, motor imagery, neuro-feeback, personalized training, stroke, virtual reality.