The inflammatory response and the intracellular signaling pathway induced by severe acute respiratory syndrome (SARS)-coronavirus (CoV) were studied in lung epithelial cells and fibroblasts. SARS-CoV spike (S) protein-encoding plasmid induced activations of IL-8 promoter and AP-1, but not NF-κB in these cells. Mutation of the AP-1, not the κB site, abolished the SARS-CoV S protein-induced IL-8 promoter activity. IL-8 release was effectively induced by vAtEpGS688, a baculovirus exhibiting the aa 17–688 fragment of S protein, and this induction was attenuated by the angiotensin-converting enzyme 2 Ab. Recombinant baculovirus expressing different deletion and insertion fragments identified the functional region of S protein from aa 324–688 (particularly the N-terminal aa 324–488 and the C-terminal aa 609–688), which is responsible for IL-8 production. Activations of AP-1 DNA-protein binding and MAPKs after vAtEpGS688 transduction were demonstrated, and SARS-CoV S protein-induced IL-8 promoter activity was inhibited by the specific inhibitors of MAPK cascades. These results suggested that the S protein of SARS-CoV could induce release of IL-8 in the lung cells via activations of MAPKs and AP-1. The identification of the functional domain for IL-8 release will provide for the drug design on targeting specific sequence domains of S protein responsible for initiating the inflammatory response.
The severe acute respiratory syndrome coronavirus (SARS-CoV) 3a protein is one of the opening reading frames in the viral genome with no homologue in other known coronaviruses. Expression of the 3a protein has been demonstrated during both in vitro and in vivo infection. Here we present biochemical data to show that 3a is a novel coronavirus structural protein. 3a was detected in virions purified from SARS-CoV infected Vero E6 cells although two truncated products were present predominantly instead of the full-length protein. In Vero E6 cells transiently transfected with a cDNA construct for expressing 3a, a similar cleavage was observed. Furthermore, co-expression of 3a, membrane and envelope proteins using the baculovirus system showed that both full-length and truncated 3a can be assembled into virus-like particles. This is the first report that demonstrated the incorporation of 3a into virion and showed that the SARS-CoV encodes a novel coronavirus structural protein.
In plants, sugars are required to sustain growth and regulate gene expression. A large set of genes are either up-or down-regulated by sugars; however, whether there is a common mechanism and signal transduction pathway for differential and coordinated sugar regulation remain unclear. In the present study, the rice (Oryza sativa cv Tainan 5) cell culture was used as a model system to address this question. Sucrose and glucose both played dual functions in gene regulation as exemplified by the up-regulation of growth-related genes and down-regulation of stress-related genes. Sugar coordinately but differentially activated or repressed gene expression, and nuclear run-on transcription and mRNA half-life analyses revealed regulation of both the transcription rate and mRNA stability. Although coordinately regulated by sugars, these growth-and stress-related genes were up-regulated or down-regulated through hexokinase-dependent and/or hexokinaseindependent pathways. We also found that the sugar signal transduction pathway may overlap the glycolytic pathway for gene repression. ␣-Amylase and the stress-related genes identified in this study were coordinately expressed under sugar starvation, suggesting a convergence of the nutritional and environmental stress signal transduction pathways. Together, our studies provide a new insight into the complex signal transduction network and mechanisms of sugar regulation of growth and stress-related genes in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.