The aim of the present study was to verify the effects of fluoxetine on dysregulation of apoptosis and invasive potential in human hepatocellular carcinoma (HCC) SK-Hep1 and Hep3B cells. Cells were treated with different concentrations of fluoxetine for different times. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assays were used for testing the effects of fluoxetine on cell viability. The regulation of apoptosis signaling, and anti-apoptotic, proliferation, and metastasis-associated proteins after fluoxetine treatment were assayed by flow cytometry and Western blotting assay. The detection of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation after fluoxetine treatment was performed by NF-κB reporter gene assay. The results demonstrated that fluoxetine significantly reduced cell viability, cell migration/invasion, NF-κB, extracellular signal-regulated kinases (ERK) activation, and expression of anti-apoptotic (Cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (C-FLIP), Myeloid cell leukemia-1 (MCL-1), X-Linked inhibitor of apoptosis protein (XAIP), and Survivin), proliferation (Cyclin-D1), angiogenesis (vascular endothelial growth factor (VEGF)), and metastasis-associated proteins (matrix metalloproteinase-9 (MMP-9)). Fluoxetine also significantly induced apoptosis, unregulated extrinsic (activation of first apoptosis signal protein and ligand (Fas/FasL), and caspase-8) and intrinsic (loss of mitochondrial membrane potential (ΔΨm) pathways and increased Bcl-2 homologous antagonist killer (BAK) apoptosis signaling. Taken together, these results demonstrated that fluoxetine induced apoptosis through extrinsic/intrinsic pathways and diminished ERK/NF-κB-modulated anti-apoptotic and invasive potential in HCC cells in vitro.
Osteosarcoma is the most common type of bone cancer. Multimodality treatment involving chemotherapy, radiotherapy and surgery is not effective enough to control osteosarcoma. Regorafenib, the oral multi-kinase inhibitor, has been shown to have positive efficacy on disease progression delay in chemotherapy resistant osteosarcoma patients. However anti-cancer effect and mechanism of regorafenib in osteosarcoma is ambiguous. Thus, the aim of this study is to investigate the efficacy and molecular mechanism of regorafenib on osteosarcoma in vitro and in vivo. Human osteosarcomas U-2 OS or MG-63 were treated with regorafenib, miltefosine (protein kinase B (AKT) inhibitor), or PD98059 (mitogen-activated protein/extracellular signal-regulated kinase (MEK) pathway inhibitor) for 24 or 48 h. Cell viability, apoptotic signaling transduction, tumor invasion, expression of tumor progression-associated proteins and tumor growth after regorafenib treatment were assayed by MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, transwell assay, Western blotting assay and in vivo animal experiment, respectively. In these studies, we also indicated that regorafenib suppressed cell growth by prompting apoptosis of osteosarcoma cells, which is mediated through inactivation of ERK and AKT signaling pathways. After regorafenib treatment, downregulation of related genes in invasion (vascular endothelial growth factor (VEGF) and matrix metallopeptidase 9 (MMP-9)), proliferation (CyclinD1) and anti-apoptosis (X-linked inhibitor of apoptosis protein (XIAP), myeloid cell leukemia-1 (MCL-1), and cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (C-FLIP)) were found. Moreover, upregulation of caspase-3 and caspase-8 cleavage were also observed. In sum, we suggest that regorafenib has potential to suppress osteosarcoma progression via inactivation of AKT and ERK mediated signaling pathway.
Anti-PD-L1 antibody monotherapy shows limited efficacy in a significant proportion of the patients. A common explanation for the inefficacy is a lack of anti-tumor effector cells in the tumor microenvironment (TME). Recombinant human interleukin-15 (hIL15), a potent immune stimulant, has been investigated in clinical trial with encouraging results. However, hIL15 is constrained by the short half-life of hIL15 and a relatively unfavorable pharmacokinetics profile. We developed a recombinant fusion IL15 protein composed of human IL15 (hIL15) and albumin binding domain (hIL15-ABD) and explored the therapeutic efficacy and immune regulation of hIL-15, hIL15-ABD and/or combination with anti-PD-L1 on CT26 murine colon cancer (CC) and B16-F10 murine melanoma models. We demonstrated that hIL15-ABD has significant inhibitory effect on the CT26 and B16-F10 tumor growths as compared to hIL-15. hIL-15-ABD not only showed superior half-life and pharmacokinetics data than hIL-15, but also enhance anti-tumor efficacy of antibody against PD-L1 via suppressive effect on accumulation of Tregs and MDSCs and activation of NK and CD8+T cells. Immune suppressive factors including VEGF and IDO were also decreased by combination treatment. hIL15-ABD combined with anti-PD-L1 antibody increased the activity of anti-tumor effector cells involved in both innate and adaptive immunities, decreased the TME’s immunosuppressive cells, and showed greater anti-tumor effect than that of either monotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.