This study determines the effect of Nab-paclitaxel in combination with IL-15 fusion protein, containing IL-15 and an anti-HSA nanobody domain, on colorectal cancer bearing mice.
In vitro
binding test of IL15 fusion protein to HSA and Nab-paclitaxel, as well as CTLL-2 cell stimulation assay were performed. The tumor inhibitory effects of Nab-paclitaxel in combination with IL-15 fusion protein was evaluated in the HCT116 bearing murine model. Moreover, the population and function of cytotoxic T cells and M1 macrophages, as well as MDSCs and Treg cells, were also further examined. As a result, combination therapy of Nab-paclitaxel and IL-15 fusion protein effectively inhibits the tumor growth and produced a 78% reduction in tumor size for HCT116, as compared to vehicle group. In the TDLN for the combination group, there were 18% of CD8+ IFN-γ + T-cells and 0.47% CD4
+
CD25
+
FOXP3
+
regulatory T-cells, as opposed to 5.0% and 5.1%, respectively, for the model control group. Combination therapy further exhibited enhanced suppressive effects on the accumulation of CD11b
+
GR-1
+
MDSC in spleen and bone marrow. Furthermore, Nab-paclitaxel and IL-15 fusion protein showed a significant suppression of NF-κB-mediated immune suppressive markers and increased expression of CD8, Granzyme B, CD62L, CD49b, and CD86 without obvious organ toxicity. In conclusion, combination therapy of Nab-paclitaxel and IL-15 fusion protein can effectively stimulate the antitumor activity of immune effector cells, thereby inhibiting immunosuppressive cells within the TME of colorectal cancer, and the overall therapeutic effect has a significant advantage over monotherapy.
Abbreviations
Interleukin 15, IL-15; Human serum albumin, HSA; Myeloid-derived suppressor cells, MDSC; Albumin binding domain, ABD; Tumor drainage lymph node, TDLN; Natural killer (NK); Tumor-draining lymph node (TDLN); Tumor infiltrating lymphocyte, TIL; Immunogenic cell death, ICD; Enhanced permeability retention, EPR; Liposomal doxorubicin, Doxil; 5-fluorouracil, 5-FU.