The relativistic massless charge carriers with a Fermi velocity of about c/300 in graphene enable us to realize two distinct types of resonances (here, c is the speed of light in vacuum). One is the electron whispering-gallery mode in graphene quantum dots arising from the Klein tunneling of the massless Dirac fermions. The other is the atomic collapse state, which has never been observed in experiment with real atoms due to the difficulty of producing heavy nuclei with charge Z > 170; however, they can be realized near a Coulomb impurity in graphene with a charge Z ≥ 1 because of the “small” velocity of the Dirac excitations. Here we demonstrate that both the electron whispering-gallery modes and atomic collapse states coexist in graphene/WSe2 heterostructure quantum dots due to the Coulomb-like potential near their edges. By applying a perpendicular magnetic field, we explore the evolution from the atomic collapse states to unusual Landau levels in the collapse regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.