Oncolytic virotherapy represents an emerging development in anticancer therapy. Although it has been tested against a variety of cancers, including breast cancer, the efficacy of oncolytic viral vectors delivered as a monotherapy is limited. Enhancing viral oncolytic therapies through combination treatment with anticancer agents is a feasible strategy. In this study, we considered a chemovirotherapeutic approach for treating breast adenocarcinoma using oncolytic measles virus (MV) and the chemotherapeutic agent camptothecin (CPT). Our results demonstrated that co-treatment of MV with CPT yielded enhanced cytotoxicity against breast cancer cells. Low dosage CPT combined with MV was also found to elicit the same therapeutic effect as high doses of CPT. At the lower dosage used, CPT did not inhibit the early stages of MV entry, nor reduce viral replication. Further studies revealed that co-treatment induced significantly enhanced apoptosis of the breast cancer cells compared to either MV or CPT alone. Overall, our findings demonstrate the potential value of MV plus CPT as a novel chemovirotherapeutic treatment against breast cancer and as a strategy to enhance MV oncolytic activity.
Oncolytic viruses (OVs) and phytochemical ursolic acid (UA) are two efficacious therapeutic candidates in development against breast cancer, the deadliest women’s cancer worldwide. However, as single agents, OVs and UA have limited clinical efficacies. As a common strategy of enhancing monotherapeutic anticancer efficacy, we explored the combinatorial chemovirotherapeutic approach of combining oncolytic measles virus (MV), which targets the breast tumor marker Nectin-4, and the anticancer UA against breast adenocarcinoma. Our findings revealed that in vitro co-treatment with UA synergistically potentiated the killing of human breast cancer cells by oncolytic MV, without UA interfering the various steps of the viral infection. Mechanistic studies revealed that the synergistic outcome from the combined treatment was mediated through UA’s potentiation of apoptotic killing by MV. To circumvent UA’s poor solubility and bioavailability and strengthen its clinical applicability, we further developed UA nanoparticles (UA-NP) by nanoemulsification. Compared to the non-formulated UA, UA-NP exhibited improved drug dissolution property and similarly synergized with oncolytic MV in inducing apoptotic breast cancer cell death. This oncolytic potentiation was partly attributed to the enhanced autophagic flux induced by the UA-NP and MV combined treatment. Finally, the synergistic effect from the UA-NP and MV combination was also observed in BT-474 and MDA-MB-468 breast cancer cells. Our study thus highlights the potential value of oncolytic MV and UA-based chemovirotherapy for further development as a treatment strategy against breast cancer, and the feasibility of employing nanoformulation to enhance UA’s applicability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.