There have been several studies of hand gesture recognition for human–machine interfaces. In the early work, most solutions were vision-based and usually had privacy problems that make them unusable in some scenarios. To address the privacy issues, more and more research on non-vision-based hand gesture recognition techniques has been proposed. This paper proposes a dynamic hand gesture system based on 60 GHz FMCW radar that can be used for contactless device control. In this paper, we receive the radar signals of hand gestures and transform them into human-understandable domains such as range, velocity, and angle. With these signatures, we can customize our system to different scenarios. We proposed an end-to-end training deep learning model (neural network and long short-term memory), that extracts the transformed radar signals into features and classifies the extracted features into hand gesture labels. In our training data collecting effort, a camera is used only to support labeling hand gesture data. The accuracy of our model can reach 98%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.