Spectroscopic studies of various types of gallstones carried out in China are reviewed. Three basic classes of gallstones are surveyed: cholesterol stones, brown pigment stones, and black pigment stones. The emphasis of this review is on brown gallstones. The primary spectroscopic methods used in the studies surveyed are Fourier transform infrared absorption and Fourier transform Raman scattering. Chemical components studied in gallstones include cholesterol, bile pigments, glycoproteins, proteins, bilirubin metal complexes, and salts of calcium and other metals. Further studies are needed characterize the relationship of these components to more complex features of gallstones.
Excellent progress has been made in the optoelectronic properties of conjugated polymers by controlling solution-state aggregation. However, due to the wide variety and complex structures of conjugated polymers, it is still challenging to fully understand the complex aggregation process and microstructures both in solution and in the solid state. This Perspective focuses on the chain conformations and the aggregation of conjugated polymers in solution. We discuss the factors in detail which affect solution-state aggregation and microstructures from the perspective of polymer physics in solutions, including chemical structures and environmental conditions. Based on the understanding of multiple interactions of conjugated polymers in solution, strategies to regulate solid-state microstructures and obtain high-performance polymer-based devices from solution-state aggregation are summarized.
It remains challenging to understand the structural evolution of conjugated polymers from single chains to solvated aggregates and film microstructures, although it underpins the performance of optoelectrical devices fabricated via the mainstream solution processing method. With several ensemble visual measurements, here we unravel the morphological evolution process of a model system of isoindigo-based conjugated molecules, including the hidden molecular assembly pathways, the mesoscale network formation, and their unorthodox chain dependence. Short chains show rigid chain conformations forming discrete aggregates in solution, which further grow to form a highly ordered film that exhibits poor electrical performance. In contrast, long chains exhibit flexible chain conformations, creating interlinked aggregates networks in solution, which are directly imprinted into films, forming interconnective solid-state microstructure with excellent electrical performance. Visualizing multi-level assembly structures of conjugated molecules provides a deep understanding of the inheritance of assemblies from solution to solid-state, accelerating the optimization of device fabrication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.