Nasopharyngeal carcinoma (NPC) is prevalent in south-eastern Asia, and its tumourigenesis is rather complex. The purpose of this research was to identify the pivotal genes that may be altered during the early stage of NPC progression. Eleven genes were selected by comparative microarray analysis of NPC versus normal nasomucosal cells. The expression of SPARC (secreted protein, acidic, cysteine-rich) was statistically significantly down-regulated in NPC cells. In exploring the mechanism underlying the decreased transcription of SPARC in NPC cells, we found that the transcription factor SRY (sex-determining region Y)-box 5 (SOX-5) is up-regulated in NPC cells. RNA interference of SOX-5 by short hairpin RNA (shRNA) in NPC cells caused a dramatic increase in SPARC and chromosome immunoprecipitation assay showed that SOX-5 can bind directly to the SPARC promoter, suggesting that SOX-5 acts as a key transcriptional repressor of SPARC. We further demonstrated that shRNA knockdown of SOX-5 suppressed the proliferation of NPC cells, as well as their migratory ability, which was also observed when SPARC was over-expressed in NPC cells. Alternatively, blocking SPARC with an antagonistic antibody reversed the effects of SOX-5 knockdown. In 66 NPC patients, over-expression of SOX-5 in tumour cells correlated clinically with poor survival. Our study suggests that SOX-5 transcriptionally down-regulates SPARC expression and plays an important role in the regulation of NPC progression. SOX-5 is a potential tumour marker for poor NPC prognosis.
Nasopharyngeal carcinoma (NPC) is one of the most common cancers among Chinese living in South China, Singapore, and Taiwan. At present, its etiological factors are not well defined. To identify which genetic alterations might be involved in NPC pathogenesis, we identified genes that were differentially expressed in NPC cell lines and normal nasomucosal cells using subtractive hybridization and microarray analysis. Most NPC cell lines and biopsy specimens were found to have higher expression levels of the gene encoding nucleolar and coiled-body phosphoprotein 1 (NOLC1) as compared with normal cells. Severe combined immunodeficiency mice bearing NPC xenografts derived from NOLC1-short hairpin-RNA-transfected animals were found to have 82% lower levels of tumor growth than control mice as well as marked tumor cell apoptosis. Measuring the expression levels of genes related to cell growth, apoptosis, and angiogenesis, we found that the MDM2 gene was down-regulated in the transfectants. Both co-transfection and chromatin immunoprecipitation experiments showed that tumor protein 53-regulated expression of the MDM2 gene requires co-activation of NOLC1. These findings suggest that NOLC1 plays a role in the regulation of tumorigenesis of NPC and demonstrate that both NOLC1 and tumor protein 53 work together synergistically to activate the MDM2 promoter in
The combination of ZnO, InN, and GaN epitaxial layers is explored to provide long wavelength photodetection capability in the GaN based materials. Growth temperature optimization was performed to obtain the best quality of InN epitaxial layer in the MOCVD system. The temperature dependent photoluminescence (PL) can provide the information about thermal quenching in the InN PL transitions and at least two non-radiative processes can be observed. X-ray diffraction and energy dispersive spectroscopy are applied to confirm the inclusion of indium and the formation of InN layer. The band alignment of such system shows a typical double heterojunction, which is preferred in optoelectronic device operation. The photodetector manufactured by this ZnO/GaN/InN layer can exhibit extended long-wavelength quantum efficiency, as high as 3.55%, and very strong photocurrent response under solar simulator illumination.
BackgroundIn humans, the presence of antiphospholipid antibodies (aPL) is frequently found in immune thrombocytopenia. The present study investigated whether aPL and any aPL subtypes are associated with canine thrombocytopenia, in particular, immune-mediated thrombocytopenia (immune thrombocytopenia) that usually manifests with severe thrombocytopenia.ResultsSera were collected from 64 outpatient dogs with thrombocytopenia (Group I, platelet count 0 – 80 × 103/uL), and 38 of which having severe thrombocytopenia (platelet count < 30 × 103/uL) were further divided into subgroups based on the presence of positive antiplatelet antibodies (aPLT) (subgroup IA, immune thrombocytopenia, n =20) or the absence of aPLT (subgroup IB, severe thrombocytopenia negative for aPLT, n =18). In addition, sera of 30 outpatient dogs without thrombocytopenia (Group II), and 80 healthy dogs (Group III) were analyzed for comparison. Indirect ELISAs were performed to compare serum levels of aPL subtypes, including anticardiolipin antibodies (aCL), antiphosphatidylserine antibodies (aPS), antiphosphatidylcholine (aPC), and anti-β2 glycoprotein I antibodies (aβ2GPI), and antiphosphatidylinositol antibodies (aPI), among different groups or subgroups of dogs. Among outpatient dogs, aCL, being highly prevalent in outpatient dogs with thrombocytopenia (63/64, 98 %), is an important risk factor for thrombocytopenia (with a high relative risk of 8.3), immune thrombocytopenia (relative risk 5.3), or severe thrombocytopenia negative for aPLT (relative risk ∞, odds ratio 19). In addition, aPS is a risk factor for immune thrombocytopenia or severe thrombocytopenia negative for aPLT (moderate relative risks around 2), whereas aPC and aβ2GPI are risk factors for immune thrombocytopenia (relative risks around 2).ConclusionsOf all the aPL subtypes tested here, aCL is highly associated with canine thrombocytopenia, including immune thrombocytopenia, severe thrombocytopenia negative for aPLT, and less severe thrombocytopenia. Furthermore, aPS is moderately associated with both canine immune thrombocytopenia and severe thrombocytopenia negative for aPLT, whereas aβ2GPI, and aPC are moderately relevant to canine immune thrombocytopenia. In contrast, aPI is not significantly associated with canine immune thrombocytopenia.Electronic supplementary materialThe online version of this article (doi:10.1186/s12917-016-0727-3) contains supplementary material, which is available to authorized users.
The dynamic behavior of a monolithic dual-wavelength distributed feedback laser was fully investigated and mapped. The combination of different driving currents for master and slave lasers can generate a wide range of different operational modes, from single mode, period 1 to chaos. Both the optical and microwave spectrum were recorded and analyzed. The detected single mode signal can continuously cover from 15GHz to 50GHz, limited by photodetector bandwidth. The measured optical four-wave-mixing pattern indicates that a 70GHz signal can be generated by this device. By applying rate equation analysis, the important laser parameters can be extracted from the spectrum. The extracted relaxation resonant frequency is found to be 8.96GHz. With the full operational map at hand, the suitable current combination can be applied to the device for proper applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.