Horizon-scale images of black holes (BHs) and their shadows have opened an unprecedented window onto tests of gravity and fundamental physics in the strong-field regime, allowing us to test whether the Kerr metric provides a good description of the space-time in the vicinity of the event horizons of supermassive BHs. We consider a wide range of well-motivated deviations from classical General Relativity solutions, and constrain them using the Event Horizon Telescope (EHT) observations of Sagittarius A * (SgrA * ), connecting the size of the bright ring of emission to that of the underlying BH shadow and exploiting high-precision measurements of SgrA * 's mass-to-distance ratio. The scenarios we consider, and whose fundamental parameters we constrain, include various regular BH models, string-and non-linear electrodynamics-inspired space-times, scalar field-driven violations of the no-hair theorem, alternative theories of gravity, new ingredients such as the generalized uncertainty principle and Barrow entropy, and BH mimickers including examples of wormholes and naked singularities. We demonstrate that SgrA * 's image places particularly stringent constraints on models predicting a shadow size which is larger than that of a Schwarzschild BH of a given mass: for instance, in the case of Barrow entropy we derive constraints which are significantly tighter than the cosmological ones. Our results are among the first tests of fundamental physics from the shadow of SgrA * and, while the latter appears to be in excellent agreement with the predictions of General Relativity, we have shown that various well-motivated alternative scenarios (including BH mimickers) are far from being ruled out at present.
We study for the first time the possibility of probing long-range fifth forces utilizing asteroid astrometric data, via the fifth force-induced orbital precession. We examine nine Near-Earth Object (NEO) asteroids whose orbital trajectories are accurately determined via optical and radar astrometry. Focusing on a Yukawa-type potential mediated by a new gauge field (dark photon) or a baryon-coupled scalar, we estimate the sensitivity reach for the fifth-force coupling strength and mediator mass in the mass range m 10 −21 − 10 −15 eV. Our estimated sensitivity is comparable to leading limits from torsion balance experiments, potentially exceeding these in a specific mass range. The fifth forced-induced precession increases with the orbital semi-major axis in the small m limit, motivating the study of objects further away from the Sun. We discuss future exciting prospects for extending our study to more than a million asteroids (including NEOs, main-belt asteroids, Hildas, and Jupiter Trojans), as well as trans-Neptunian objects and exoplanets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.