Ramulus Mori (Sangzhi) alkaloids (SZ-A) derived from twigs of mulberry (Morus alba L., genus Morus in the Moraceae family) was approved by the National Medical Products Administration in 2020 for the treatment of type 2 diabetes mellitus. In addition to excellent hypoglycemic effect, increasing evidence has confirmed that SZ-A exerts multiple pharmacological effects, such as protecting pancreatic ß-cell function, stimulating adiponectin expression, and alleviating hepatic steatosis. Importantly, a specific distribution of SZ-A in target tissues following oral absorption into the blood is essential for the induction of multiple pharmacological effects. However, there is a lack of studies thoroughly exploring the pharmacokinetic profiles and tissue distribution of SZ-A following oral absorption into the blood, particularly dose-linear pharmacokinetics and target tissue distribution associated with glycolipid metabolic diseases. In the present study, we systematically investigated the pharmacokinetics and tissue distribution of SZ-A and its metabolites in human and rat liver microsomes, and rat plasma, as well as its effects on the activity of hepatic cytochrome P450 enzymes (CYP450s). The results revealed that SZ-A was rapidly absorbed into the blood, exhibited linear pharmacokinetic characteristics in the dose range of 25–200 mg/kg, and was broadly distributed in glycolipid metabolism-related tissues. The highest SZ-A concentrations were observed in the kidney, liver, and aortic vessels, followed by the brown and subcutaneous adipose tissues, and the heart, spleen, lung, muscle, pancreas, and brain. Except for the trace oxidation products produced by fagomine, other phase I or phase II metabolites were not detected. SZ-A had no inhibitory or activating effects on major CYP450s. Conclusively, SZ-A is rapidly and widely distributed in target tissues, with good metabolic stability and a low risk of triggering drug-drug interactions. This study provides a framework for deciphering the material basis of the multiple pharmacological functions of SZ-A, its rational clinical use, and the expansion of its indications.
The imbalance of gut microbiota has been confirmed to have a close pathological and physiological correlation with obesity and metabolic syndrome. Ramulus Mori (Sangzhi) Alkaloids (SZ-A) derived from twigs of mulberry was approved by the National Medical Products Administration of China in 2020 for the treatment of type 2 diabetes mellitus. In addition to its hypoglycemic effect, previous studies have confirmed that SZ-A also alleviates high-fat diet-induced obesity and non-alcoholic fatty liver disease and ameliorates obesity-linked adipose tissue metabolism and inflammation, indicating the potential of SZ-A to regulate obesity and metabolic syndrome. However, whether SZ-A can improve obesity and metabolic syndrome by regulating gut microbiota and its metabolism profiles remains unclear. The purpose of this study was to assess the effect of SZ-A on gut microbiota in obese mice and to explore the association among changes in gut microbiota, obesity, and lipid metabolism. The results showed that oral administration of SZ-A could significantly reduce body weight, fat mass, and the level of total cholesterol and low-density lipoprotein in serum in obese mice induced by a high-fat diet. Interestingly, SZ-A also regulated gut microbiota and changed the fecal metabolite composition of obese mice. Compared with the high-fat diet group, the ratio of Firmicutes to Bacteroides changed at the phylum level and the abundance of Bifidobacterium and Akkermansia muciniphila significantly increased at the genus level in the SZ-A group. The gut microbiota of the SZ-A group was reshaped and the relative abundance of microbial genes in bile acid metabolism and fatty acid metabolism were altered, which was consistent with the metabolomics results. Additionally, SZ-A greatly enriched the number of goblet cells and reduced inflammatory colon injury and pro-inflammatory macrophage infiltration induced by a high-fat diet in obese mice. In conclusion, SZ-A can alleviate obesity and metabolic syndrome by improving the gut microbiota and its metabolism profiles of obese mice induced by a high-fat diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.