In this work, Mg-3Y sheet was prepared by high temperature cross-rolling and subsequent short-term annealing. The effect of annealing on microstructure, texture, mechanical properties, and stretch formability of Mg-3Y sheet was primarily investigated. Micro-nano size coexistence of β-Mg24Y5 phases can be well deformed with matrix. The as-rolled Mg-3Y sheet exhibited a homogeneous deformation microstructure consisting of deformed grains with extensive kink bands and dispersed β-Mg24Y5 phases. A double peak texture character appeared in as-rolled Mg-3Y sheet with a split of the texture peaks of about ±20° tilted to rolling direction. After annealing, the as-annealed Mg-3Y sheet presented complete static recrystallized (SRXed) microstructure consisting of uniform equiaxed grains. The texture orientation distribution was more dispersed and a weakened multiple-peak texture orientation distribution appeared. In addition, the maximum intensity of basal plane decreased from 5.2 to 3.1. The change of texture character was attributed to static recrystallization (SRX) induced by kink bands and grain boundaries. The as-annealed Mg-3Y sheet with high Schmid factor (SF) for basal <a> slip, prismatic <a> slip, pyramidal <a> slip, and pyramidal <c+a> slip exhibited high ductility (~25.6%). Simultaneously, enhanced activity of basal <a> slip and randomized grain orientation played a significant role in decreasing anisotropy for the as-annealed Mg-3Y sheet, which contributed to the formation of high stretch formability (~6.2 mm) at room temperature.
In this study, different contents of rare earth elements with high solid solubility (Gd and Dy) were added into Mg and fabricated through homogenization and hot extrusion processes that enable few second phase formation to efficaciously inhibit the galvanic corrosion. The microstructure and phase characterization of the as-extruded Mg–Gd–Dy–Zr alloys were analyzed by scanning electron microscopy, electron backscattered diffraction, and X-ray diffraction. The in vitro biodegradation behavior of the as-extruded Mg–Gd–Dy–Zr alloys was investigated via the electrochemical measurement and immersion test. The results revealed that all the as-extruded alloys with different RE additions exerted fully recrystallized microstructures. The average grain size was appropriately 20 μm to 30 μm for all alloys and gradually increased by adding more RE. Only a few tiny second-phase particles less than 5 μm dispersed for all the samples and the volume fraction of particles increased slightly with the increase in RE content. The as-extruded Mg–Gd–Dy–Zr alloys with low RE content (GD0.6) allowed for a satisfactory corrosion resistance in Hank’s solution with a controlled corrosion rate less than 0.5 mm/year, which is considered as the tolerance limit for the corrosion rate of orthopedic implants. This study provides a cost-effective choice for promoting biodegradable magnesium alloys for potential orthopedic applications with low rare earth content in Mg alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.