Water-soluble, block copolymeric carriers consisting of polyoxyethylene (PEO) and polyspermine (PS) chains have been developed for the delivery of antisense oligonucleotides (oligo) into the target cells. These copolymers spontaneously form complexes with oligos in aqueous solutions. The PS block electrostatically binds to the oligo, and as a result, the stability of the oligo is increased. Similarly, the polar PEO block provides for the aqueous solubility of the complex. This paper (i) reports the synthesis of the diblock PEO-PS copolymer and (ii) evaluates the effects of the complexes formed between this copolymer and phosphodiester oligo, complementary to the splice junction of herpes simplex virus type 1 immediate early pre-mRNAs 4 and 5, on the reproduction of this virus in Vero cells. Infectious titer data 22 and 39 h post infection indicates that the copolymer-oligo complex inhibits the reproduction of the virus beyond the detection limit. Conversely, the free oligo inhibits the reproduction of the virus only 22 h postinfection, while 39 h postinfection significant virus titers are observed. The results of this study suggest that the copolymer complex increases the sequence-specific inhibition effect of oligo on the virus reproduction.
Self-assembling complexes from nucleic acids and synthetic polymers are evaluated for plasmid and oligonucleotide (oligo) delivery. Polycations having linear, branched, dendritic. block- or graft copolymer architectures are used in these studies. All these molecules bind to nucleic acids due to formation of cooperative systems of salt bonds between the cationic groups of the polycation and phosphate groups of the DNA. To improve solubility of the DNA/polycation complexes, cationic block and graft copolymers containing segments from polycations and non-ionic soluble polymers, for example, poly(ethylene oxide) (PEO) were developed. Binding of these copolymers with short DNA chains, such as oligos, results in formation of species containing hydrophobic sites from neutralized DNA polycation complex and hydrophilic sites from PEO. These species spontaneously associate into polyion complex micelles with a hydrophobic core from neutralized polyions and a hydrophilic shell from PEO. Such complexes are very small (10-40 nm) and stable in solution despite complete neutralization of charge. They reveal significant activity with oligos in vitro and in vivo. Binding of cationic copolymers to plasmid DNA forms larger (70-200 nm) complexes. which are practically inactive in cell transfection studies. It is likely that PEO prevents binding of these complexes with the cell membranes ("stealth effect"). However attaching specific ligands to the PEO-corona can produce complexes, which are both stable in solution and bind to target cells. The most efficient complexes were obtained when PEO in the cationic copolymer was replaced with membrane-active PEO-b-poly(propylene oxide)-b-PEO molecules (Pluronic 123). Such complexes exhibited elevated levels of transgene expression in liver following systemic administration in mice. To increase stability of the complexes, NanoGel carriers were developed that represent small hydrogel particles synthesized by cross-linking of PEI with double end activated PEO using an emulsification/solvent evaporation technique. Oligos are immobilized by mixing with NanoGel suspension, which results in the formation of small particles (80 nm). Oligos incorporated in NanoGel are able to reach targets within the cell and suppress gene expression in a sequence-specific fashion. Further. loaded NanoGel particles cross-polarized monolayers of intestinal cells (Caco-2) suggesting potential usefulness of these systems for oral administration of oligos. In conclusion the approaches using polycations for gene delivery for the design of gene transfer complexes that exhibit a very broad range of physicochemical and biological properties, which is essential for design of a new generation of more effective non-viral gene delivery systems.
Mesenchymal stromal cells (MSC) control excessive inflammation and create a microenvironment for tissue repair protecting from chronic inflammation and tissue fibrosis. We examined the molecular mechanisms of MSC immunomodulatory function in mixed cultures of human adipose-derived MSC with lymphocytes. Our data show that MSC promote unstimulated lymphocyte survival potentially by an increase in antigen presentation. Under inflammatory conditions, mimicked by stimulation of TCR in lymphocytes, MSC suppress activation and proliferation of stimulated T cells. Immunosuppression is accompanied by downregulation of IL-2Rα that negatively affects the survival of activated T cells. MSC upregulate transcription of indolamine-2,3-dioxygenase (IDO) and inducible NO synthase (iNOS), which generate products negatively affecting T cell function. Both MSC and lymphocytes dramatically increase the surface ICAM-1 level in mixed cultures. Antibody-mediated blockage of surface ICAM-1 partially releases MSC-mediated immune suppression in vitro. Our data suggest that MSC have cell-intrinsic molecular programs depending on the inflammatory microenvironment. We speculate that MSC sense soluble factors and respond by surface ICAM-1 upregulation. ICAM-1 is involved in the control of T cell activation leading to immunosuppression or modest stimulation depending on the T cell status. Immunomodulation by MSC ranging from support of naive T cell survival to immunosuppression of activated T cells may affect the tissue microenvironment protecting from aberrant regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.