Recently, deep learning (DL) methods have been introduced very successfully into human activity recognition (HAR) scenarios in ubiquitous and wearable computing. Especially the prospect of overcoming the need for manual feature design combined with superior classification capabilities render deep neural networks very attractive for real-life HAR applications. Even though DL-based approaches now outperform the state-of-the-art in a number of recognition tasks, still substantial challenges remain. Most prominently, issues with real-life datasets, typically including imbalanced datasets and problematic data quality, still limit the effectiveness of activity recognition using wearables. In this paper we tackle such challenges through Ensembles of deep Long Short Term Memory (LSTM) networks. LSTM networks currently represent the state-of-the-art with superior classification performance on relevant HAR benchmark datasets. We have developed modified training procedures for LSTM networks and combine sets of diverse LSTM learners into classifier collectives. We demonstrate that Ensembles of deep LSTM learners outperform individual LSTM networks and thus push the state-of-the-art in human activity recognition using wearables. Through an extensive experimental evaluation on three standard benchmarks (Opportunity, PAMAP2, Skoda) we demonstrate the excellent recognition capabilities of our approach and its potential for real-life applications of human activity recognition.
In recent years, there has been a significant expansion in the development and use of multi-modal sensors and technologies to monitor physical activity, sleep and circadian rhythms. These developments make accurate sleep monitoring at scale a possibility for the first time. Vast amounts of multi-sensor data are being generated with potential applications ranging from large-scale epidemiological research linking sleep patterns to disease, to wellness applications, including the sleep coaching of individuals with chronic conditions. However, in order to realise the full potential of these technologies for individuals, medicine and research, several significant challenges must be overcome. There are important outstanding questions regarding performance evaluation, as well as data storage, curation, processing, integration, modelling and interpretation. Here, we leverage expertise across neuroscience, clinical medicine, bioengineering, electrical engineering, epidemiology, computer science, mHealth and human-computer interaction to discuss the digitisation of sleep from a inter-disciplinary perspective. We introduce the state-ofthe-art in sleep-monitoring technologies, and discuss the opportunities and challenges from data acquisition to the eventual application of insights in clinical and consumer settings. Further, we explore the strengths and limitations of current and emerging sensing methods with a particular focus on novel data-driven technologies, such as Artificial Intelligence.
Parkinson’s disease (PD) is the second most common neurodegenerative disease; gait impairments are typical and are associated with increased fall risk and poor quality of life. Gait is potentially a useful biomarker to help discriminate PD at an early stage, however the optimal characteristics and combination are unclear. In this study, we used machine learning (ML) techniques to determine the optimal combination of gait characteristics to discriminate people with PD and healthy controls (HC). 303 participants (119 PD, 184 HC) walked continuously around a circuit for 2-minutes at a self-paced walk. Gait was quantified using an instrumented mat (GAITRite) from which 16 gait characteristics were derived and assessed. Gait characteristics were selected using different ML approaches to determine the optimal method (random forest with information gain and recursive features elimination (RFE) technique with support vector machine (SVM) and logistic regression). Five clinical gait characteristics were identified with RFE-SVM (mean step velocity, mean step length, step length variability, mean step width, and step width variability) that accurately classified PD. Model accuracy for classification of early PD ranged between 73–97% with 63–100% sensitivity and 79–94% specificity. In conclusion, we identified a subset of gait characteristics for accurate early classification of PD. These findings pave the way for a better understanding of the utility of ML techniques to support informed clinical decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.