Inspired by the photoprotection, radical scavenging of melanin together with versatile adhesive ability of mussel proteins, polydopamine (PDA) nanoparticles were successfully prepared and incorporated into environmentally friendly polymer, poly(propylene carbonate) (PPC) via solvent blending. The prepared composites exhibited excellent thermal stability in air and nitrogen atmosphere and extraordinary mechanical properties. The composites displayed eminent increase of temperature at 5% weight loss (T 5% ) by 30100 K with 0.3 wt%2.0 wt% loadings, meanwhile, the tensile strength and Young's modulus were significantly improved from 11.5 MPa and 553.7 MPa to 40.5 MPa and 2411.2 MPa, respectively. The kinetic calculation indicated that improvement of T 5% is presumably derived from suppressing chain-end unzipping. The glass transition temperature (T g ) of the PPC/PDA composites increased by 810 K. This is probably due to hydrogen bonding interaction since the abundant proton donors along PDA chains would interact with proton acceptors like C=O and C-O-C in PPC which would cause restriction of segmental motion of PPC chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.