BackgroundNeuropilin-1 (NRP-1) is a transmembrane glycoprotein participating in the growth and metastasis of cancer cells as multifunctional co-receptors by interacting with the signaling pathways. However, its role in gastric cancer has not yet been clarified. This study aims to investigate whether NRP-1 expression is associated with the clinicopathology of gastric cancer, and involved in the growth and metastasis of gastric cancer cells.MethodsNRP-1 expression in clinical gastric cancer specimens was examined by immunohistochemistry and its association with clinicopathology analyzed. The expression of NRP-1 in a panel of human gastric cancer cells was examined by real-time RT-PCR and immunoblotting. Stable transfectants depleted of NRP-1, termed MGC-803-NRPlow, were generated from MGC-803 cells. Cell proliferation was analyzed by the Cell Counting Kit-8 and Bromodeoxyuridine incorporation assays, and migrating ability analyzed by migration assays. The xenograft model was used to assess the effects of NRP-1 depletion on tumorigenesis, growth, metastasis and therapeutic potentials. The role of NRP-1 as co-receptors in the signaling pathways stimulated by ligands was examined. The key molecules involved in cell proliferation, migration and related signaling pathways were detected by immunoblotting.ResultsGastric cancer tissues expressed higher levels of NRP-1 compared to normal gastric mucosa. Its expression correlated with clinical staging, tumor differentiation and pathological types. NRP-1 depletion inhibited cell proliferation by inducing cell cycle arrest in the G1/S phase by upregulating p27, and downregulating cyclin E and cyclin-dependent kinase 2. NRP-1 depletion reduced the ability of cells to migrate by inhibiting the phosphorylation of focal adhesion kinase. NRP-1 depletion suppressed tumorigenesis, tumor growth and lung metastasis by inhibiting cell proliferation and tumor angiogenesis in situ. Therapeutic NRP-1 shRNA inhibited the growth of established BGC823 tumors. Depletion of NRP-1 inhibited the activation of VEGF/VEGFR2, EGF/EGFR and HGF/c-Met pathways stimulated by respective recombinant human VEGF-165, EGF and HGF proteins.ConclusionsThe present results indicate that NRP-1 may be a potentially valuable biomarker and therapeutic target for gastric cancer.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-016-0291-5) contains supplementary material, which is available to authorized users.
Background. Resistin may be involved in the pathogenesis of osteoarthritis (OA), but a systematic understanding of the role of resistin in OA is lacking. Methods. We reviewed studies that evaluated the role of resistin in OA. The expression levels of resistin in vitro experiments and OA/rheumatoid arthritis (RA) patients were analyzed. We also studied potential resistin receptors and the signaling pathways that these receptors activate, ultimately leading to cartilage degeneration. Results. Resistin levels in both the serum and synovial fluid were higher in OA and RA patients than in healthy subjects. Overall, resistin levels are much higher in serum than in synovial fluid. In human cartilage, resistin induces the expression of proinflammatory factors such as degradative enzymes, leading to the inhibition of cartilage matrix synthesis, perhaps by binding to Toll-like receptor 4 and the adenylyl cyclase-associated protein 1 receptor, which then activates the p38-mitogen-activated phosphate kinase, protein kinase A–cyclic AMP, nuclear factor-κB, and C/enhancer-binding protein β signaling pathways. Conclusion. Resistin levels are higher in OA patients than in healthy controls; however, the precise role of resistin in the pathogenesis of OA needs to be studied further. Resistin may be a novel therapeutic target in OA in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.