We previously identified SEC14, phospholipid transfer protein superfamily gene, in Nicotiana benthamiana (NbSEC14) that was closely related to phospholipid signaling as well as jasmonic acid-dependent defense responses during plant immune responses against Ralstonia solanacearum. To examine effect of NbSEC14-silencing on basal plant defenses, we used two other bacterial pathogens with different virulent strategies, Pseudomonas syringae pv. tabaci and pv. mellea. NbSEC14-silenced plants showed accelerated growth of P. syringae pv. tabaci and pv. mellea, and formation of necrotic lesions. Induction of JA-related PR-4 gene was compromised in NbSEC14-silenced plants, which was supported by reduced jasmonic acid levels in NbSEC14-silenced plants. These results suggested that NbSEC14 might be regulating plant basal resistance against plant pathogenic Pseudomonads via jasmonic acid-dependent signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.