In the present study, we aimed to search for dysregulated lnRNAs in Hepatocellular carcinoma (HCC) tissues, and analyze the relationship of its expression level with the clinicopathological feature and patient prognosis. The biological function of FLVCR1-AS1, the identified lncRNA, in the process of HCC development, and progression was investigated in vitro and in vivo. The underlying molecular mechanism was further explored. We determined FLVCR1-AS1 expression in HCC tissues and peri-tumor tissues by bioinformatic analysis, qRT-PCR, Northern blot and in situ hybridization. The relationship between FLVCR1-AS1 expression level and prognosis was determined by analyzing clinical samples. The effects of FLVCR1-AS1 knockdown on HCC cell proliferation, apoptosis, migration, and invasion were investigated by CCK8, FACS, and tanswell assay, respectively. Tumor xenograft model was used to determine the influence of down-regulated FLVCR1-AS1 on tumor growth and metastasis. lncRNA FLVCR1-AS1 was extremely up-regulated in HCC tissues and cell lines. FLVCR1-AS1 expression level was positively correlated with tumor severity. FLVCR1-AS1 knockdown remarkably inhibited HCC cell proliferation, migration, and invasion in vitro and in vivo while induced cell apoptosis. In mechanism, FLVCR1-AS1 acted as a competitive endogenous RNAs to sponge miR-513c which targeted the mRNA of MET for degradation. By directly sponging miR-513c, FLVCR1-AS1 increased MET expression in HCC, and then promoted HCC progression. It was demonstrated that FLVCR1-AS1 played a positive role in HCC development and progression according to the study in its mechanism, function and clinical manifestation, so that it could be expected to become a new target in HCC prevention and treatment.
Recent studies found that irisin, a newly discovered skeletal muscle-derived myokine during exercise, is also synthesized in various tissues of different species and protects against neuronal injury in cerebral ischemia. The NOD-like receptor pyrin 3 (NLRP3) inflammasome play an important role in detecting cellular damage and mediating inflammatory responses to aseptic tissue injury during ischemic stroke. However, it is unclear whether irisin is involved in the regulation of NLRP3 inflammasome activation during ischemic stroke. In the present study, PC12 neuronal cells were exposed to oxygen-glucose deprivation (OGD), exogenous irisin (12.5, 25, 50nmol/L) or NLRP3 inhibitor glyburide (50, 100, 200μmol/L) were used as an intervention reagent, NLRP3 was over-expressed or suppressed by transfection with a NLRP3 expressing vector or NLRP3-specifc siRNA, respectively. Our data showed that both irisin and its precursor protein fibronectin type III domain containing 5 (FNDC5) expression were significantly down-regulated (p<0.05); but oxidative stress and ROS-NLRP3 inflammasome signaling were activated by OGD (p<0.05); treatment with irisin or inhibition of NLRP3 reversed OGD-induced oxidative stress and inflammation (p<0.05). However, these irisin-mediated effects were blunted by over-expression NLRP3 (p<0.05). Taken together, our results firstly revealed that irisin mitigated OGD-induced neuronal injury in part via inhibiting ROS-NLRP3 inflammatory signaling pathway, suggesting a likely mechanism for irisin-induced therapeutic effect in ischemic stroke.
Oxytocin (OT), a nonapeptide, has a variety of functions. Despite extensive studies on OT over past decades, our understanding of its neural functions and their regulation remains incomplete. OT is mainly produced in OT neurons in the supraoptic nucleus (SON), paraventricular nucleus (PVN) and accessory nuclei between the SON and PVN. OT exerts neuromodulatory effects in the brain and spinal cord. While magnocellular OT neurons in the SON and PVN mainly innervate the pituitary and forebrain regions, and parvocellular OT neurons in the PVN innervate brainstem and spinal cord, the two sets of OT neurons have close interactions histologically and functionally. OT expression occurs at early life to promote mental and physical development, while its subsequent decrease in expression in later life stage accompanies aging and diseases. Adaptive changes in this OT system, however, take place under different conditions and upon the maturation of OT release machinery. OT can modulate social recognition and behaviors, learning and memory, emotion, reward, and other higher brain functions. OT also regulates eating and drinking, sleep and wakefulness, nociception and analgesia, sexual behavior, parturition, lactation and other instinctive behaviors. OT regulates the autonomic nervous system, and somatic and specialized senses. Notably, OT can have different modulatory effects on the same function under different conditions. Such divergence may derive from different neural connections, OT receptor gene dimorphism and methylation, and complex interactions with other hormones. In this review, brain functions of OT and their underlying neural mechanisms as well as the perspectives of their clinical usage are presented.
Background: Renal ischemia/reperfusion (I/R)-induced acute kidney injury remains to be a troublesome condition in clinical practice. Although the exact molecular mechanisms underlying renal I/R injury are incompletely understood, the deleterious progress of renal I/R injury involves inflammation, apoptosis, and oxidative stress. Diosmetin is a member of the flavonoid glycosides family, which suppresses the inflammatory response and cellular apoptosis and enhances antioxidant activity. The purpose of this study was to investigate the protective effect of diosmetin on I/R-induced renal injury in mice.Methods: Thirty BALB/c mice were randomly divided into five groups. Four groups of mice received diosmetin (0.25, 0.5, and 1 mg/kg) or vehicle (I/R group) before ischemia. Another group received vehicle without ischemia to serve as a negative control (sham-operated group). Twenty-four hours after reperfusion, serum and renal tissues were harvested to evaluate renal function and histopathologic features. In addition, the expression of inflammation-related proteins, apoptotic molecules, and antioxidant enzymes was analyzed.Results: Compared with sham mice, the I/R group significantly exacerbated renal function and renal tube architecture and increased the inflammatory response and renal tubule apoptosis. Nevertheless, pretreatment with diosmetin reversed these changes. In addition, diosmetin treatment resulted in a marked increase in antioxidant protein expression compared with I/R mice. Conclusions:The renoprotective effects of diosmetin involved suppression of the nuclear factor-kB and mitochondrial apoptosis pathways, as well as activation of the nuclear factor erythroid 2erelated factor 2/heme oxygenase-1 pathway. Diosmetin has significant potential as a therapeutic intervention to ameliorate renal injury after renal I/R.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.