Effect of structural relaxation (SR) on the electrical characteristics and bias stability of solution-processed zinc–tin oxide (ZTO) thin-film transistors (TFTs) were systematically investigated by controlling the annealing time of the ZTO semiconductor films. Note that SR was found to increase with increased annealing time. Due to the increased SR, the ratio of oxygen vacancies (VO) increased from 21.5% to 38.2%. According to increased VO, the mobility in the saturation region was exhibited by a sixfold increase from 0.38 to 2.41 cm2 V−1 s−1. In addition, we found that the threshold voltage negatively shifted from 3.08 to −0.95 V. Regarding the issue of bias stability, according to increased SR, positive-bias stress of the ZTO TFTs was enhanced, compared with reverse features of negative-bias stress. Our understanding is expected to provide a basic way to improve the electrical characteristics and bias stability of rare-metal-free oxide semiconductor TFTs, which have not been sufficiently studied.
We investigate the physico-chemical origins that determine the transistor characteristics and stabilities in sol-gel processed zinc tin oxide (ZTO) thin-film transistors (TFTs). ZTO solutions with Sn/(Sn+Zn) molar ratios from 0.3 to 0.6 were synthesized to demonstrate the underlying mechanism of the electrical characteristics and bias-induced instabilities. As the Sn/(Sn+Zn) ratio of ZTO is increased, the threshold voltage of the ZTO TFTs negatively shifts owing to the gradual increase in the ratio of oxygen vacancies. The ZTO TFTs with an Sn/(Sn+Zn) ratio of 0.4 exhibit highest saturation mobility of 1.56 cm2/Vs lowest subthreshold swing and hysteresis of 0.44 V/dec and 0.29 V, respectively, due to the desirable atomic states of ZTO thin film. Furthermore, these also exhibit outstanding positive bias stability due to the low trap density at the semiconductor-dielectric interface. On the other hand, the negative bias stress-induced instability gradually increases as the proportion of tin increases because the negative bias stress instability originates from the ionization of oxygen vacancies. These results will contribute to the optimization of the composition ratio in rare-metal-free oxide semiconductors for next-generation low-cost electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.