Proteins are natural modular objects usually composed of several domains, each domain bearing a specific function that is mediated through its surface, which is accessible to vicinal molecules. This draws attention to an understudied characteristic of protein structures: surface, that is mostly unexploited by protein structure comparison methods. In the present work, we evaluated the performance of six shape comparison methods, among which three are based on machine learning, to distinguish between 588 multi-domain proteins and to recreate the evolutionary relationships at the protein and species levels of the SCOPe database.The six groups that participated in the challenge submitted a total of 15 sets of results. We observed that the performance of all the methods significantly decreases at the species level, suggesting that shape-only protein comparison is challenging for closely related proteins. Even if the dataset is limited in size (only 588 proteins are considered whereas more than 160,0 0 0 protein structures are experimentally solved), we think that this work provides useful insights into the current shape comparison methods performance, and highlights possible limitations to large-scale applications due to the computational cost.
Affective image understanding has been extensively studied in the last decade since more and more users express emotion via visual contents. While current algorithms based on convolutional neural networks aim to distinguish emotional categories in a discrete label space, the task is inherently ambiguous. This is mainly because emotional labels with the same polarity (i.e., positive or negative) are highly related, which is different from concrete object concepts such as cat, dog and bird. To the best of our knowledge, few methods focus on leveraging such characteristic of emotions for affective image understanding. In this work, we address the problem of understanding affective images via deep metric learning and propose a multi-task deep framework to optimize both retrieval and classification goals. We propose the sentiment constraints adapted from the triplet constraints, which are able to explore the hierarchical relation of emotion labels. We further exploit the sentiment vector as an effective representation to distinguish affective images utilizing the texture representation derived from convolutional layers. Extensive evaluations on four widely-used affective datasets, i.e., Flickr and Instagram, IAPSa, Art Photo, and Abstract Paintings, demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods on both affective image retrieval and classification tasks.
Humans have the ability to perceive kinetic depth effects, i.e., to perceived 3D shapes from 2D projections of rotating 3D objects. This process is based on a variety of visual cues such as lighting and shading effects. However, when such cues are weak or missing, perception can become faulty, as demonstrated by the famous silhouette illusion example of the spinning dancer. Inspired by this, we establish objective and subjective evaluation models of rotated 3D objects by taking their projected 2D images as input. We investigate five different cues: ambient luminance, shading, rotation speed, perspective, and color difference between the objects and background. In the objective evaluation model, we first apply 3D reconstruction algorithms to obtain an objective reconstruction quality metric, and then use quadratic stepwise regression analysis to determine weights of depth cues to represent the reconstruction quality. In the subjective evaluation model, we use a comprehensive user study to reveal correlations with reaction time and accuracy, rotation speed, and perspective. The two evaluation models are generally consistent, and potentially of benefit to inter-disciplinary research into visual perception and 3D reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.