In the present series of papers we propose a consistent description of the mass loss process.To study the effects of intrinsic magnetic field of a close-orbit giant exoplanet (so-called Hot Jupiter) on the atmospheric material escape and formation of planetary inner magnetosphere in a comprehensive way, we start with a hydrodynamic model of an upper atmosphere expansion presented in this paper. While considering a simple hydrogen atmosphere model, we focus on selfconsistent inclusion of the effects of radiative heating and ionization of the atmospheric gas with its consequent expansion in the outer space. Primary attention is paid to investigation of the role of specific conditions at the inner and outer boundaries of the simulation domain, under which different regimes of material escape (free-and restricted-flow) are formed. Comparative study of different processes, such as XUV heating, material ionization and recombination, 3
Three solar wind reconnection exhaust events observed by the Wind satellite are compared to the analytical solution of the Riemannian decay of a current sheet due to reconnection of skewed magnetic fields. This process leads to high speed flows inside an exhaust region which is bounded not only by Alfvénic and slow mode waves but also, to a large extent, by tangential discontinuities (TDs). The TD portions of the exhaust boundary expand with distance from the X‐line and therefore a long exhaust does not necessarily imply a long X‐line. In some cases, portions of the exhaust show oscillations which might be connected to a Kelvin‐Helmholtz instability in agreement with analytical estimates.
We present two-dimensional multi-fluid numerical modelling of the upper atmosphere of the hot Jupiter WASP-12b. The model includes hydrogen chemistry, and self-consistently describes the expansion of the planetary upper atmosphere and mass loss due to intensive stellar irradiation, assuming a weakly magnetized planet. We simulate the planetary upper atmosphere and its interaction with the stellar wind (SW) with and without the inclusion of tidal force and consider different XUV irradiation conditions and SW parameters. With the inclusion of tidal force, even for a fast SW, the escaping planetary material forms two streams, propagating towards and away from the star. The atmospheric escape and related mass loss rate reaching the value of 10 12 gs -1 appear to be mostly controlled by the stellar gravitational pull. We computed the column density and dynamics of MgII ions considering three different sets of SW parameters and XUV fluxes. The simulations enable to compute the absorption at the position of the Mg h line and to reproduce the times of ingress and egress. In case of a slow SW and without accounting for tidal force, the high orbital velocity leads to the formation of a shock approximately in the direction of the planetary orbital motion. In this case, mass loss is proportional to the stellar XUV flux. At the same time, ignoring of tidal effects for WASP-12b is a strong simplification, so the scenario with a shock, altogether is an unrealistic one.Keywords: planets and satellites: individual: exoplanetplanets and satellites: gaseous planetsplanets and satellites: atmosphereplanets and satellites: dynamical evolution and stabilityplanets and satellites: atmosphereplanet-star interactions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.