In this study the role of CXCL6 in diabetic nephropathy (DN) was investigated. It was found to be overexpression in DN patients and DN rat model. And the expression of fibrosis-related cytokines was consistent with the expression of CXCL6. High glucose significantly increased the proliferation of rat renal fibroblasts NRK-49F cell and the expression of CXCL6. Knockdown of CXCL6 ameliorated the pro-proliferation effect of high glucose and decreased the expression of fibrosis-related cytokines, while CXCL6 overexpression exhibited the opposite phenomenon. Gene set enrichment analysis, Western blot and ELISA showed that Janus kinase-signal transducer and activator of transcription (JAK-STAT) and CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION signaling pathways were correlative with CXCL6. This data indicates that CXCL6 may promote fibrosis-related factors to accelerate the development of DN renal interstitial fibrosis by activating JAK/STAT3 signaling pathway. CXCL6 is promising to be a potential novel therapeutic target and candidate biomarker for JAK/STAT3 signaling for the treatment of DN.
Rho GTPase activating protein 9 (ARHGAP9), a member of RhoGAP family, has been identified as a RhoGAP for Cdc42 and Rac1. Here, we aimed to clarify the expression and functional role of ARHGAP9 in hepatocellular carcinoma (HCC). By analyzing TCGA (The Cancer Genome Atlas) LIHC (liver hepatocellular carcinoma) database, we found that ARHGAP9 expression was lower in HCC tissues than in normal liver tissues, and that patients with ARHGAP9 lower expression had a significant shorter overall survival time than those with ARHGAP9 higher expression. Cell counting kit-8 (CCK-8), transwell assays and in vivo experimental lung metastasis assay revealed that ARHGAP9 overexpression could inhibit HCC cell proliferation, migration and invasion, as well as HCC lung metastases. By next-generation RNA-sequencing, we identified that a transcription factor, Forkhead Box J2 (FOXJ2), was significantly induced by ARHGAP9 overexpression in HepG2 cells. Ectopic expression of FOXJ2 in HCC cell lines also exerted inhibitory effects on cell migration and invasion. Moreover, the inhibitory effects of ARHGAP9 on HCC cell migration and invasion was significantly attenuated by FOXJ2 knockdown. Luciferase reporter assay demonstrated that ARHGAP9 enhanced the transcription of E-cadherin (CDH1) via FOXJ2. Chromatin immunoprecipitation (ChIP) assay demonstrated that FOXJ2 modulated the transcription of E-cadherin (CDH1) by directly binding to its promoter. Furthermore, Pearson’s correlation analysis indicated that the mRNA levels of ARHGAP9 in HCC tissues were positively correlated with the mRNA levels of FOXJ2 and CDH1. These data clearly show that ARHGAP9/FOXJ2 inhibit cell migration and invasion during HCC development via inducing the transcription of CDH1.
Hair loss may not be recognized as a life-threatening disorder. However, it has a great harm on a person's self-respect, mental health, and entirety quality of life. Androgenic alopecia (AGA) is the most common type of hair loss, which affects a great number of both men and women. Alopecia can be treated with various hair loss strategies, including hair transplant, cosmetics and medication. Medical treatment shows the outstanding ability in improving hair growth. Plenty of drugs prevent alopecia by inhibiting the secretion of male hormone. But these medicines exhibit some undesirable side effects. Since hair loss requires a long-term treatment, and minimizing adverse side effects is extremely urgent in drug development. Accordingly, new agents are obtained from natural products with less adverse effects. Traditional Chinese medicines exhibit unique advantages in hair loss treatment. This review generalizes and analyzes the recent progress of medicinal plants for the treatment of hair loss, suggested mechanisms and outlines a number of trials taken or underway to optimize the treatment.
All forms of chronic kidney disease (CKD) eventually lead to renal fibrosis irrespective of its origin. It is generally characterized by an excessive accumulation and deposition of extracellular matrix (ECM) and to date, no ideal treatment has been established. Bian-Zheng-Lun-Zhi (syndrome differentiation and treatment), a classic feature of traditional Chinese Medicine (TCM), is a unique method used to diagnose and treat the pathology of a disease. Zheng (syndrome) is used to demonstrate the nature of a disease completely in an extensive and specific manner. Chinese herbal formulas are determined according to TCM theory and this review highlights these formulas and suggests a possible mechanism for their use in the treatment of renal fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.