Background Gastric cancer (GC) is one of the most common cancers worldwide with a poor prognosis. The tumor microenvironment (TME) serves a pivotal role in affecting the prognosis and efficacy of immunotherapy. Given the poor prognosis of GC patients and the limitation of immunotherapy, we urged to identify new prognostic and immunotherapeutic biomarkers. Methods The transcriptome data were downloaded from the TCGA, GEO, and GEPIA databases, and performed differential analysis of AFF3 in tumor samples and normal samples. The UALCAN, Kaplan–Meier plotter and GEPIA databases were employed to assess the correlation of AFF3 with clinicopathological characteristics and prognosis. The potential mechanism of AFF3 was explored by the GO and KEGG enrichment. The potential role of AFF3 on tumor‐infiltrating immune cells (TIICs) was explored by TIMER2.0 and TISIDB. TIMER2.0 and SangerBox3.0 databases were, respectively, used to determine the correlation of AFF3 with immune checkpoint (ICs), tumor mutational burden (TMB), and microsatellite instability (MSI) in GC. Results We found significant downregulation of AFF3 in GC tissues as compared with normal tissues. However, GC patients having a higher expression of AFF3 were found to have worse clinicopathological characteristics and prognosis. Moreover, the GO enrichment analysis illustrated that AFF3 might regulate the immune cells in the TME. In addition, the AFF3 was positively correlated with TIICs, ICs, TMB, and MSI. Conclusion Here, we conclude that AFF3 may be a promising potential marker for the diagnosis and prognosis of GC patients, and may influence response to ICIs by affecting TIICs and ICs expression in the TME.
Background To verify the differential expression of miR‐30c and miR‐142‐3p between tuberculosis patients and healthy controls and to investigate the performance of microRNA (miRNA) and subsequently models for the diagnosis of tuberculosis (TB). Methods We followed up 460 subjects suspected of TB, and finally enrolled 132 patients, including 60 TB patients, 24 non‐TB disease controls (TB‐DCs), and 48 healthy controls (HCs). The differential expression of miR‐30c and miR‐142‐3p in serum samples of the TB patients, TB‐DCs, and HCs were identified by reverse transcription–quantitative real‐time PCR. Diagnostic models were developed by analyzing the characteristics of miRNA and electronic health records (EHRs). These models evaluated by the area under the curves (AUC) and calibration curves were presented as nomograms. Results There were differential expression of miR‐30c and miR‐142‐3p between TB patients and HCs (p < 0.05). Individual miRNA has a limited diagnostic value for TB. However, diagnostic performance has been both significantly improved when we integrated miR‐142‐3p and ordinary EHRs to develop two models for the diagnosis of tuberculosis. The AUC of the model for distinguishing tuberculosis patients from healthy controls has increased from 0.75 (95% CI: 0.66–0.84) to 0.96 (95% CI: 0.92–0.99) and the model for distinguishing tuberculosis patients from non‐TB disease controls has increased from 0.67 (95% CI: 0.55–0.79) to 0.94 (95% CI: 0.89–0.99). Conclusions Integrating serum miR‐142‐3p and EHRs is a good strategy for improving TB diagnosis.
Suppressor of cytokine signalling (SOCS) 1/2/3/4 are involved in the occurrence and progression of multiple malignancies; however, their prognostic and developmental value in patients with glioblastoma (GBM) remains unclear. The present study used TCGA, ONCOMINE, SangerBox3.0, UALCAN, TIMER2.0, GENEMANIA, TISDB, The Human Protein Atlas (HPA) and other databases to analyse the expression profile, clinical value and prognosis of SOCS1/2/3/4 in GBM, and to explore the potential development mechanism of action of SOCS1/2/3/4 in GBM. The majority of analyses showed that SOCS1/2/3/4 transcription and translation levels in GBM tissues were significantly higher than those in normal tissues. qRT‐PCR, western blotting (WB) and immunohistochemical staining were used to verify that SOCS3 was expressed at higher mRNA and protein levels in GBM than in normal tissues or cells. High SOCS1/2/3/4 mRNA expression was associated with poor prognosis in patients with GBM, especially SOCS3. SOCS1/2/3/4 were highly contraindicated, which had few mutations, and were not associated with clinical prognosis. Furthermore, SOCS1/2/3/4 were associated with the infiltration of specific immune cell types. In addition, SOCS3 may affect the prognosis of patients with GBM through JAK/STAT signalling pathway. Analysis of the GBM‐specific protein interaction (PPI) network showed that SOCS1/2/3/4 were involved in multiple potential carcinogenic mechanisms of GBM. In addition, colony formation, Transwell, wound healing and western blotting assays revealed that inhibition of SOCS3 decreased the proliferation, migration and invasion of GBM cells. In conclusion, the present study elucidated the expression profile and prognostic value of SOCS1/2/3/4 in GBM, which may provide potential prognostic biomarkers and therapeutic targets for GBM, especially SOCS3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.