Change detection is a basic task of remote sensing image processing. The research objective is to identify the change information of interest and filter out the irrelevant change information as interference factors. Recently, the rise in deep learning has provided new tools for change detection, which have yielded impressive results. However, the available methods focus mainly on the difference information between multitemporal remote sensing images and lack robustness to pseudochange information. To overcome the lack of resistance in current methods to pseudochanges, in this article, we propose a new method, namely, dual attentive fully convolutional Siamese networks, for change detection in high-resolution images. Through the dual attention mechanism, long-range dependencies are captured to obtain more discriminant feature representations to enhance the recognition performance of the model. Moreover, the imbalanced sample is a serious problem in change detection, i.e., unchanged samples are much more abundant than changed samples, which is one of the main reasons for pseudochanges. We propose the weighted double-margin contrastive loss to address this problem by punishing attention to unchanged feature pairs and increasing attention to changed feature pairs. The experimental results of our method on the change detection dataset and the building change detection dataset demonstrate that compared with other baseline methods, the proposed method realizes maximum improvements of 2.9% and 4.2%, respectively, in the F1 score. Our PyTorch implementation is available at https://github.com/lehaifeng/DASNet.
In this paper, we propose a novel MoNet model to deeply exploit motion cues for boosting video object segmentation performance from two aspects, i.e., frame representation learning and segmentation refinement. Concretely, MoNet exploits computed motion cue (i.e., optical flow) to reinforce the representation of the target frame by aligning and integrating representations from its neighbors. The new representation provides valuable temporal contexts for segmentation and improves robustness to various common contaminating factors, e.g., motion blur, appearance variation and deformation of video objects. Moreover, MoNet exploits motion inconsistency and transforms such motion cue into foreground/background prior to eliminate distraction from confusing instances and noisy regions. By introducing a distance transform layer, MoNet can effectively separate motion-inconstant instances/regions and thoroughly refine segmentation results. Integrating the proposed two motion exploitation components with a standard segmentation network, MoNet provides new state-of-the-art performance on three competitive benchmark datasets.
High Speed Railway(HSR) scenario was currently agreed as the main scenario in the 3GPP Rel.11 study item, Mobile Relay for E-UTRA. Usually, communications of high-speed railway systems suffer from problems such as Doppler spread, radio condition abrupt change and handover failure. Mobile relay is a promising scheme to solve these problems, but the quantitative performance improvement to HSR has not been fully evaluated and analyzed. In this paper, a high speed scenario with mobile relay integrated is presented to analyze these issues for LTE Advanced system. The proposed mobile relay solution with group mobility is evaluated by a series of system simulation which witnesses an improvement in train user throughput as well as system throughput, and higher handover success ratio with a decrease in radio link failure ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.