Shikonin and its derivatives extracted from Lithospermeae plants’ red roots have current applications in food and pharmaceutical industries. Previous studies have cloned some genes related to shikonin biosynthesis. However, most genes related to shikonin biosynthesis remain unclear, because the lack of the genome/transcriptome of the Lithospermeae plants. Therefore, in order to provide a new understanding of shikonin biosynthesis, we obtained transcriptome data and unigenes expression profiles in three shikonin-producing Lithospermeae plants, i.e., Lithospermum erythrorhizon, Arnebia euchroma and Echium plantagineum. As a result, two unigenes (i.e., G10H and 12OPR) that are involved in “shikonin downstream biosynthesis” and “methyl jasmonate biosynthesis” were deemed to relate to shikonin biosynthesis in this study. Furthermore, we conducted a Lamiids phylogenetic model and identified orthologous unigenes under positive selection in above three Lithospermeae plants. The results indicated Boraginales was more relative to Solanales/Gentianales than to Lamiales.
MicroRNAs (miRNAs) play an important role in plant growth, development, and response to environment. For identifying and comparing miRNAs and their targets in seed development between two maize inbred lines (i.e. PH6WC and PH4CV), two sRNAs and two degradome libraries were constructed. Through high-throughput sequencing and miRNA identification, 55 conserved and 24 novel unique miRNA sequences were identified in two sRNA libraries; moreover, through degradome sequencing and analysis, 137 target transcripts corresponding to 38 unique miRNA sequences were identified in two degradome libraries. Subsequently, 16 significantly differentially expressed miRNA sequences were verified by qRT-PCR, in which 9 verified sequences obviously target 30 transcripts mainly involved with regulation in flowering and development in embryo. Therefore, the results suggested that some miRNAs (e.g. miR156, miR171, miR396 and miR444) related reproductive development might differentially express in seed development between the PH6WC and PH4CV maize inbred lines in this present study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.