We developed an osseocompatible β-type Ti-28Nb-11Ta-8Zr (TNTZ) alloy that displays the excellent elastic modulus, cellular response, corrosion resistance and antibacterial capability demanded for bone-mimetic materials. The TNTZ alloy exhibited an elastic modulus of 49 GPa, which approximates that of human bones and prevent stress shielding effects. A further anodic oxidation and subsequent post-annealing modification formed a crystalline nanoporous TNTZ oxide layer (NPTNTZO(c)) on the alloy surface, potentially promoting interlocking with the extracellular matrix of bone cells and cell proliferation. Osteoblast viability tests also verified that NPTNTZO(c) enhanced cell growth more significantly than that of flat TNTZ. In addition, potentiodynamic polarization tests in Hanks’ balanced salt solution (HBSS) revealed that both TNTZ and NPTNTZO(c) exhibited better corrosion resistance than commercial pure titanium. Finally, NPTNTZO(c) reinforced with silver nanoparticles (NPTNTZO(c)/AgNPs) intensified the antibacterial efficiency against Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli for 8 h with antibacterial efficiencies of 87.82%, 97.68%, and 93.90%, respectively, facilitating infection prevention during surgery and recovery stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.