Osteoclasts, multinucleated cells of myeloid-monocytic origin, are responsible for bone resorption, which is crucial for maintenance of bone homeostasis in concert with bone-forming osteoblasts of nonhematopoietic, mesenchymal origin. Receptor activator of NF-κB ligand (RANKL) and M-CSF, expressed on the surface of and secreted by osteoblasts, respectively, are essential factors that facilitate osteoclast formation. In contrast to the activation processes for osteoclast formation, inhibitory mechanisms for it are poorly understood. Herein we demonstrate that inhibitory Ig-like receptors recruiting Src homology 2 domain-containing tyrosine phosphatase 1 (SHP-1) are expressed on osteoclast precursor cells like other myeloid cells, and that they play a regulatory role in the development of osteoclasts. We detected cell-surface expression of paired Ig-like receptor (PIR)-B and four isoforms of leukocyte Ig-like receptor (LILR)B on cultured osteoclast precursor cells of mouse and human origin, respectively, and showed that all of these ITIM-harboring inhibitory receptors constitutively recruit SHP-1 in the presence of RANKL and M-CSF, and that some of them can suppress osteoclast development in vitro. Fluorescence energy transfer analyses have suggested that the constitutive binding of either murine PIR-B or its human ortholog LILRB1 to MHC class I molecules on the same cell surface comprises one of the mechanisms for developmental regulation. These results constitute the first evidence of the regulation of osteoclast formation by cell-surface, ITIM-harboring Ig-like receptors. Modulation of these regulatory receptors may be a novel way to control various skeletal system disorders and inflammatory arthritis.
Edited by Roger J. Colbran Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication that have the potential to improve cardiac function when used in cell-based therapy. However, the means by which cardiomyocytes respond to EVs remains unclear. Here, we sought to clarify the role of exosomes in improving cardiac function by investigating the effect of cardiomyocyte endocytosis of exosomes from mesenchymal stem cells on acute myocardial infarction (MI). Exposing cardiomyocytes to the culture supernatant of adipose-derived regenerative cells (ADRCs) prevented cardiomyocyte cell damage under hypoxia in vitro. In vivo, the injection of ADRCs into the heart simultaneous with coronary artery ligation decreased overall cardiac infarct area and prevented cardiac rupture after acute MI. Quantitative RT-PCR-based analysis of the expression of 35 known anti-apoptotic and secreted microRNAs (miRNAs) in ADRCs revealed that ADRCs express several of these miRNAs, among which miR-214 was the most abundant. Of note, miR-214 silencing in ADRCs significantly impaired the anti-apoptotic effects of the ADRC treatment on cardiomyocytes in vitro and in vivo. To examine cardiomyocyte endocytosis of exosomes, we cultured the cardiomyocytes with ADRC-derived exosomes labeled with the fluorescent dye PKH67 and found that hypoxic culture conditions increased the levels of the labeled exosomes in cardiomyocytes. Chlorpromazine, an inhibitor of clathrin-mediated endocytosis, significantly suppressed the ADRC-induced decrease of hypoxia-damaged cardiomyocytes and also decreased hypoxia-induced cardiomyocyte capture of both labeled EVs and extracellular miR-214 secreted from ADRCs. Our results indicate that clathrin-mediated endocytosis in cardiomyocytes plays a critical role in their uptake of circulating, exosome-associated miRNAs that inhibit apoptosis.
SAPHO syndrome had different clinical and radiological aspects. The clinical features were not remarkable, except the dermatological manifestations and the involvement of the anterior chest. Bone lesions including hyperostosis and osteitis were found radiographically in the majority of patients with SAPHO syndrome. These are the characteristics of the SAPHO syndrome, with the exclusion of other bone diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.